
Timeboost Auction Contracts
Security Assessment
September 25, 2024

Prepared for:

Offchain Labs

Prepared by: Gustavo Grieco, Priyanka Bose, and Michael Colburn



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’ request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Project Goals 7
Project Targets 8
Project Coverage 9
Codebase Maturity Evaluation 10
Summary of Findings 12
Detailed Findings 13

1. Bids cannot be resolved if reservePrice is zero 13
2. Discrepancies in the structure and use of signatures between the specification
and implementation 15
3. No way to burn auction proceeds 17

A. Vulnerability Categories 19
B. Code Maturity Categories 21
C. Code Quality Recommendations 23
D. Smart Contract Fuzzing Recommendations 24

Trail of Bits 3 Offchain Labs Timeboost Security Assessment
PUBLIC



Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Gustavo Grieco, Consultant Priyanka Bose, Consultant
gustavo.grieco@trailofbits.com priyanka.bose@trailofbits.com

Michael Colburn, Consultant
michael.colburn@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

August 28, 2024 Delivery of report draft

August 28, 2024 Report readout meeting

September 25, 2024 Delivery of comprehensive report

Trail of Bits 4 Offchain Labs Timeboost Security Assessment
PUBLIC

mailto:mary.obrien@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:gustavo.grieco@trailofbits.com
mailto:priyanka.bose@trailofbits.com
mailto:michael.colburn@trailofbits.com


Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of their Timeboost auction
contracts. These contracts implement the on-chain components of a sealed-bid,
second-price auction for the rights to assign an express lane controller whose transactions
are processed faster by the sequencer for a set period of time.

A team of three consultants conducted the review from August 19 to August 27, 2024, for a
total of three engineer-weeks of effort. With full access to source code and documentation,
we performed static and dynamic testing of the codebase using automated and manual
processes.

Observations and Impact
The codebase includes extensive NatSpec documentation, and the project’s specification
provides a comprehensive description of the system’s functionality, the roles involved, and
the auction mechanism, though we did note several minor discrepancies between the
written specification and the implementation.

During the review, we evaluated the access controls, the accuracy of updating the round
timing info, the possibility of malicious bidders evading bidding amount, the potential for
introducing bias during the selection of the winning bid, and any possibility that could halt
the auction’s progression. Our review resulted in three issues ranging in severity from
medium to informational. The medium-severity issue highlights an unhandled edge case
that could prevent an auction round from being finalized (TOB-ELA-1), and the remaining
informational issues are related to discrepancies with the specification (TOB-ELA-2,
TOB-ELA-3).

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Offchain Labs take the following steps:

● Remediate the TOB-ELA-002 issue disclosed in this report. This finding should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Add a stateful fuzzing test suite. Trail of Bits considers stateful fuzzing to be a
baseline requirement for DeFi protocols and applications and recommends fuzzing
the system’s user flows and arithmetic calculations.

Trail of Bits 5 Offchain Labs Timeboost Security Assessment
PUBLIC



● Align implementation with the specification. A number of discrepancies exist
between the specification and the actual implementation. These two should be
aligned to eliminate any gaps between them.

Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 1

Low 0

Informational 2

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Data Validation 3

Trail of Bits 6 Offchain Labs Timeboost Security Assessment
PUBLIC



Project Goals

The engagement was scoped to provide a security assessment of Offchain Labs’ Timeboost
design. Specifically, we sought to answer the following non-exhaustive list of questions:

● Are proper access controls used in the contracts that users interact with?

● Could an unauthorized user disrupt the auction?

● Could one user withdraw another user’s tokens?

● Are any of the components vulnerable to price manipulation?

● Could a user’s funds become frozen or stuck?

● Are events used appropriately?

● Is the actual implementation in line with the provided specification?

● Do auction rounds always start and end at the expected time?

● Can a round be resolved multiple times?

● Could the use of signed arithmetic in the system’s timekeeping allow the system to
be put in an unexpected state?

Trail of Bits 7 Offchain Labs Timeboost Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the following targets.

express-lane-auction (PR 214)
Repository https://github.com/OffchainLabs/nitro-contracts

Version 9dc19d21c0ba0df89529cc0085915fa9565ecafd (initial)

84ade5042533fb35c3f30ae7bfec85580eba461d (fixes)

Type Solidity

Platform EVM

timeboost-design
Repository https://github.com/OffchainLabs/timeboost-design

Version 02846291b669d559c4bbf13e2ea0d499864d043b

Type Markdown

Trail of Bits 8 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts
https://github.com/OffchainLabs/timeboost-design


Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Timeboost auction smart contracts. The on-chain part of the Timeboost auction
protocol is implemented using several smart contracts, which will allow any user to
deposit funds, withdraw their funds, or temporarily select the express lane
controller if they win the auction. Privileged users can also perform administrative
operations, such as change the protocol parameters or resolve auctions, by
submitting bids received off-chain.

We reviewed these contracts for common Solidity issues as well as any issues
related to access control violations, accuracy of updating round timing information,
and any deviations of the implementation from the standard. We also explored the
potential for malicious bidders to manipulate bidding amounts during the auction,
the possibility of fund loss or theft from the contracts, and whether users from the
protocol could block bids, or somehow delay or disrupt the auction.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● While we reviewed the informal specification of the Timeboost auction mechanism
for inconsistencies, we did not review some aspects of this mechanism, such as the
high-level impact to the rollups or the economic soundness.

● We did not review the off-chain components of the Timeboost protocol.

Trail of Bits 9 Offchain Labs Timeboost Security Assessment
PUBLIC



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Overall, the system does not rely on complex arithmetic,
and arithmetic use seems safe. Additionally, the protocol
is implemented using Solidity 0.8.9, which has overflow
protection by default for arithmetic operations, and the
contracts do not include any unchecked blocks. The
system’s operations depend on certain privileged actors
manually executing essential tasks (via off-chain
executions). However, certain features, such as the round
offset that relies on signed numbers, should be properly
documented in the code and the standard to ensure that
their properties are not violated by other contracts.

Satisfactory

Auditing All system operations emit events that include sufficient
context for effective off-chain monitoring. However,
there is a general lack of documentation about the
implications of each event and what kind of events could
indicate unexpected behavior.

Satisfactory

Authentication /
Access Controls

The system heavily relies on access controls to protect
arbitrary users from calling privileged functions. The core
contract divides these responsibilities across seven
different roles, in addition to the default admin role.
Most functions are restricted to either a special privileged
user or the DAO governance to call.

Satisfactory

Complexity
Management

The functions and contracts are organized and scoped
appropriately and contain inline documentation that
explains their workings.

Satisfactory

Decentralization As the client has indicated, the use of off-chain
components and the privileged users lowers the
decentralization level of the protocol, but this is well

Moderate

Trail of Bits 10 Offchain Labs Timeboost Security Assessment
PUBLIC



documented. For example, the auctioneer is trusted to
not censor bids and resolve auctions according to the
specification.

Documentation The project has good high-level documentation, a
specification indicating the behavior of the system, and
good use of NatSpec and inline comments. However, the
system’s invariants are not specified.

Satisfactory

Testing and
Verification

The codebase contains a number of unit and integration
tests, as well a small amount of fuzz testing properties.
However, the tests are insufficient to catch
medium-severity issues, which indicates that the test
suite should be improved. The codebase would benefit
from expanded fuzz testing, as described in appendix D.

Moderate

Transaction
Ordering

While on-chain auction implementations are usually
susceptible to transaction ordering, this does not apply
directly since bids are resolved using a trusted user. This
user only performs the resolution of the bid on-chain and
is supposed to verify the state of the blockchain before
submitting transactions to the network to ensure that
user balances are sufficient.

Satisfactory

Trail of Bits 11 Offchain Labs Timeboost Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Bids cannot be resolved if reservePrice is zero Data Validation Medium

2 Discrepancies in the structure and use of
signatures between the specification and
implementation

Data Validation Informational

3 No way to burn auction proceeds Data Validation Informational

Trail of Bits 12 Offchain Labs Timeboost Security Assessment
PUBLIC



Detailed Findings

1. Bids cannot be resolved if reservePrice is zero

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-ELA-1

Target: src/express-lane-auction/Balance.sol

Description
Auction resolution will revert if the reserve price is zero, blocking the express lane
controller address from being assigned for that round.

Express lane controller selection is performed through a second-bid auction, where a
privileged user will call the resolveSingleBidAuction or resolveMultiBidAuction
function to resolve an auction using valid signatures from users willing to pay a particular
amount.

/// @inheritdoc IExpressLaneAuction
function resolveSingleBidAuction(Bid calldata firstPriceBid)

External
392 /// @inheritdoc IExpressLaneAuction
393 function resolveSingleBidAuction(Bid calldata firstPriceBid)
394 external
395 onlyRole(AUCTIONEER_ROLE)
...
422 /// @inheritdoc IExpressLaneAuction
423 function resolveMultiBidAuction(Bid calldata firstPriceBid, Bid calldata
secondPriceBid)
424 external
425 onlyRole(AUCTIONEER_ROLE)

Figure 1.1: The headers of the functions used by the auctioneer to resolve auctions
(src/express-lane-auction/ExpressLaneAuction.sol#L392-L425)

When an auction is resolved, the price paid for the bid is taken from the balance of the
bidder:

308 function resolveAuction(
309 bool isMultiBid,
310 Bid calldata firstPriceBid,
311 address firstPriceBidder,
312 uint256 priceToPay,

Trail of Bits 13 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/src/express-lane-auction/ExpressLaneAuction.sol#L392-L425


313 uint64 biddingInRound,
314 uint64 roundStart,
315 uint64 roundEnd
316 ) internal {
317 // store that a round has been resolved
318 uint64 biddingForRound = biddingInRound + 1;
319 latestResolvedRounds.setResolvedRound(biddingForRound,
firstPriceBid.expressLaneController);
320
321 // first price bidder pays the beneficiary
322 _balanceOf[firstPriceBidder].reduce(priceToPay, biddingInRound);

Figure 1.2: A snippet of the resolveAuction function showing the price being deducted from
the winning bidder’s balance

(src/express-lane-auction/ExpressLaneAuction.sol#L308-L322)

However, if the price to pay is zero, the balance reduction will revert.

77 function reduce(
78 Balance storage bal,
79 uint256 amount,
80 uint64 round
81 ) internal {
82 if (amount == 0) {
83 revert ZeroAmount();
84 }

Figure 1.3: A snippet of the reduce library function that expects a non-zero deduction
(src/express-lane-auction/Balance.sol#L77-L84)

Exploit Scenario
The reserve price is set to zero and Alice is the sole bidder for a round. Since this is a
second-price auction, she should pay the reserve price when the auction for this round is
resolved. The auctioneer calls the resolveSingleBidAuction function and passes in
Alice’s bid. The call reverts when it attempts to deduct zero tokens from Alice’s balance. As
a result, no express lane controller can be assigned for that round.

Recommendations
Short term, consider allowing the reduce function to decrement zero.

Long term, use fuzz testing to detect unexpected reverts caused by calling different
functions of the smart contracts.

Fix Status
Resolved in PR 243. The updated code allows for bids of zero tokens as long as the bidder
has a non-zero balance.

Trail of Bits 14 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/src/express-lane-auction/ExpressLaneAuction.sol#L308-L322
https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/src/express-lane-auction/Balance.sol#L77-L84
https://github.com/OffchainLabs/nitro-contracts/pull/243


2. Discrepancies in the structure and use of signatures between the
specification and implementation

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ELA-2

Target: src/express-lane-auction/ExpressLaneAuction.sol

Description
Bids that are submitted to an express lane auction round include signatures that must be
validated on-chain. While reviewing the specification and implementation, we identified
several minor discrepancies between the documentation and the contract’s use of
signatures. These differences do not compromise the integrity of the signatures used by
the system, but may result in integration issues for third parties attempting to bid.

The written specification defines a bid as containing “(chainId,
auctionContractAddress, roundNumber, bid, expressLaneControllerAddress,
signature)” and defines the signature as being “signature by the bidder’s private key on
the tuple (chainId, auctionContractAddress, roundNumber, bid,
expressLaneControllerAddress)”. A code comment in the IExpressLaneAuction
contract further specifies an EIP-191 personal_sign message format for the signature
using all of the fields mentioned above (though with the order of the last two fields
swapped).

However, the contract actually expects an EIP-712 signature with the chainId and
auctionContractAddress in the domain separator, and the actual bid being constructed
of the remaining three fields (again, with the order of the last two fields swapped relative to
the specification), as shown in figure 2.1.

356 function getBidHash(
357 uint64 round,
358 address expressLaneController,
359 uint256 amount
360 ) public view returns (bytes32) {
361 return
362 _hashTypedDataV4(
363 keccak256(abi.encode(BID_DOMAIN, round, expressLaneController,
amount))
364 );
365 }

Figure 2.1: The getBidHash function definition showing the order of the bid parameters
src/express-lane-auction/ExpressLaneAuction.sol#L356-L365

Trail of Bits 15 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/src/express-lane-auction/ExpressLaneAuction.sol#L356-L365


This also has trickle-down effects on how ties will be broken by the contract. The
specification states that if the top two bidders submit bids with identical amounts, then
“the tie is broken by hashing the bidder address concatenated with the respective
byte-string representation of the bid using the Keccak256 hashing scheme.” However, since
the contract considers a bid to be constructed differently than the specification, the
outcome of the tie breaking process will differ. Additionally, rather than concatenating the
bidder’s address with the full byte-string representation of the bid, the contract uses a hash
of the bid (figure 2.2).

460 // when bids have the same amount we break ties based on the bid hash
461 // although we include equality in the check we know this isnt possible due
462 // to the check above that ensures the first price bidder and second price
bidder are different
463 if (
464 firstPriceBid.amount == secondPriceBid.amount &&
465 uint256(keccak256(abi.encodePacked(firstPriceBidder, firstBidHash))) <
466 uint256(keccak256(abi.encodePacked(secondPriceBidder, secondBidHash)))
467 ) {
468 revert TieBidsWrongOrder();
469 }

Figure 2.2: A portion of the resolveMultiBidAuction function body showing the tie breaking
logic src/express-lane-auction/ExpressLaneAuction.sol#L460-L469

Recommendations
Short term, update the specification to match the implemented behavior.

Long term, review the Arbitrum-related specifications across components and resolve any
discrepancies.

Fix Status
Unresolved.

Trail of Bits 16 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/src/express-lane-auction/ExpressLaneAuction.sol#L460-L469


3. No way to burn auction proceeds

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ELA-3

Target: src/express-lane-auction/ExpressLaneAuction.sol

Description
According to the Timeboost specification, after deducting the funds from the highest
bidder, the contract should “transfer those funds to a beneficiary account designated by
governance, or burn them if governance specifies that the proceeds are to be burned.”
However, the contract does not include any mechanism to signal that the proceeds should
be burned either at the time of auction resolution or when the funds are later transferred
out of the contract. At the time of auction resolution, the funds are escrowed in an internal
beneficiary account (figure 3.1) that can be emptied at a later date.

308 function resolveAuction(
309 bool isMultiBid,
310 Bid calldata firstPriceBid,
311 address firstPriceBidder,
312 uint256 priceToPay,
313 uint64 biddingInRound,
314 uint64 roundStart,
315 uint64 roundEnd
316 ) internal {
317 // store that a round has been resolved
318 uint64 biddingForRound = biddingInRound + 1;
319 latestResolvedRounds.setResolvedRound(biddingForRound,
firstPriceBid.expressLaneController);
320
321 // first price bidder pays the beneficiary
322 _balanceOf[firstPriceBidder].reduce(priceToPay, biddingInRound);
323 beneficiaryBalance += priceToPay;

Figure 3.1: A snippet of the resolveAuction function definition showing the proceeds being
escrowed (src/express-lane-auction/ExpressLaneAuction.sol#L308-L323)

The only way to access the beneficiary account is via the flushBeneficiaryBalance
function (figure 3.2). Any user can call this function, which will transfer the entire
beneficiary balance to the currently designated beneficiary address.

291 function flushBeneficiaryBalance() public {
292 uint256 bal = beneficiaryBalance;
293 if (bal == 0) {

Trail of Bits 17 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/src/express-lane-auction/ExpressLaneAuction.sol#L308-L323


294 revert ZeroAmount();
295 }
296 beneficiaryBalance = 0;
297 biddingToken.safeTransfer(beneficiary, bal);
298 }

Figure 3.2: The flushBeneficiaryBalance function
(src/express-lane-auction/ExpressLaneAuction.sol#L291-L298)

Recommendations
Short term, add functionality to explicitly signal that tokens should be burned, or update
the specification to reflect that the currently implemented behavior is correct.

Long term, review the Arbitrum-related specifications across components and resolve any
discrepancies.

Fix Status
Resolved in PR 242. The Offchain Labs team has added a new Burner contract that can be
deployed if needed and set as the beneficiary in the event that governance decides to
configure the system to burn auction proceeds.

Trail of Bits 18 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/src/express-lane-auction/ExpressLaneAuction.sol#L291-L298
https://github.com/OffchainLabs/nitro-contracts/pull/242


A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 19 Offchain Labs Timeboost Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 20 Offchain Labs Timeboost Security Assessment
PUBLIC



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Transaction
Ordering

The system’s resistance to transaction-ordering attacks

Trail of Bits 21 Offchain Labs Timeboost Security Assessment
PUBLIC



Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 22 Offchain Labs Timeboost Security Assessment
PUBLIC



C. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

Smart Contracts
● Update the out-of-date comment at the top of the Balance contract that suggests

that a pending withdrawal will block future deposits, as the current behavior will
allow deposits at any time and remove any pending withdrawals instead.

● Clarify the expected bounds on the roundDurationSeconds field of a
RoundTimingInfo struct. The code comment for the field suggests that the valid
range is strictly less than 86400, but the validation in the
setRoundTimingInfoInternal function accepts a value less than or equal to
86400.

Unit Tests
● The testSetBeneficiary test has an unused variable named newBeneficiary2

that should be removed.

1741 function testSetBeneficiary() public {
1742 ResolveSetup memory rs = deployDepositAndBids();
1743 vm.stopPrank();
1744
1745 address newBeneficiary = vm.addr(9090);
1746 address newBeneficiary2 = vm.addr(9091);
1747
1748 bytes memory revertString = abi.encodePacked(
1749 "AccessControl: account ",
1750 Strings.toHexString(uint160(address(this)), 20),
1751 " is missing role ",
1752 Strings.toHexString(uint256(rs.auction.BENEFICIARY_SETTER_ROLE()),
32)
1753 );
1754 vm.expectRevert(revertString);
1755 rs.auction.setBeneficiary(newBeneficiary);
1756
1757 vm.prank(beneficiarySetter);
1758 vm.expectEmit(true, true, true, true);
1759 emit SetBeneficiary(beneficiary, newBeneficiary);
1760 rs.auction.setBeneficiary(newBeneficiary);
1761 assertEq(rs.auction.beneficiary(), newBeneficiary, "new beneficiary");
1762 }

Figure C.1: The testSetBeneficiary unit test with an unused variable
(test/foundry/ExpressLaneAuction.t.sol#L1741-L1762)

Trail of Bits 23 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/test/foundry/ExpressLaneAuction.t.sol#L1741-L1762


D. Smart Contract Fuzzing Recommendations

The following recommendations are related to the use of fuzz testing on the Express Lane
Auction smart contracts.

● Make sure you cover both stateless and stateful invariants. The current code favors
stateless tests, even if the code is used with different states. For instance, this is how
the Balance contract tests that balances are reduced to zero after the withdrawal
round:

51 function testBalanceAtRound(
52 uint256 initialBalance,
53 uint64 initialRound,
54 uint64 withdrawalRound
55 ) public {
56 Balance memory bal = Balance(initialBalance, initialRound);
57 BalanceImp b = new BalanceImp(bal);
58 if (withdrawalRound >= initialRound) {
59 assertEq(b.balanceAtRound(withdrawalRound), 0);
60 } else {
61 assertEq(b.balanceAtRound(withdrawalRound), initialBalance);
62 }
63 }

Figure D.1: The testBalanceAtRound fuzz test for checking how the contract
behaves depending on the withdrawal round

(test/foundry/ExpressLaneBalance.t.sol#L51-L63)

Though the Balance contract can change its state over different transactions, this
test is really stateless since the state is simulated using different parameter values
instead of actually executing different operations (deployment, startWithdrawal,
and endWithdrawal). This pattern should be avoided; instead, use invariant testing
that initializes the Balance contract once and checks different types of invariants
when different operations are executed (e.g., after a successful withdrawal, the
balance of the user should be zero). Additional guidance on introducing stateful
fuzzing can be found in Trail of Bits’ ”Learn how to fuzz like a pro” series on
YouTube.

● Consider making a list of invariants of the protocol to check one by one if they are
properly tested. We collected the following system invariants from the written
specification that can be used as a starting point for defining a good set of
invariants:

○ The express lane controller (ELC) is determined by a per-round auction.

○ The auction is implemented as a sealed-bid, second-price auction.

Trail of Bits 24 Offchain Labs Timeboost Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro-contracts/blob/9dc19d21c0ba0df89529cc0085915fa9565ecafd/test/foundry/ExpressLaneBalance.t.sol#L51-L63
https://www.youtube.com/watch?v=QofNQxW_K08&list=PLciHOL_J7Iwqdja9UH4ZzE8dP1IxtsBXI
https://www.youtube.com/watch?v=QofNQxW_K08&list=PLciHOL_J7Iwqdja9UH4ZzE8dP1IxtsBXI


○ The auction is managed on-chain by an auction contract, and by an
“autonomous auctioneer.”

○ The auctioneer is designated by governance.

○ The auction has a minimum reserve price.

○ The minimum reserve price is set by governance.

○ The contract stores the minimum and current reserve prices.

○ The contract enforces that the current reserve price is not less than the
minimum reserve price.

○ Governance can designate a reserve pricer.

○ The reserve pricer can update the reserve price to any value equal or greater
to the minimum.

○ There is a blackout period during which the reserve price cannot be updated
by the pricer.

○ This window is ReserveSubmissionSeconds seconds before bidding for a
round closes.

■ For a round that starts at time t, the blackout period begins at t -
AuctionClosingSeconds - ReserveSubmissionSeconds and
lasts until the round ends.

○ Bidders know the reserve price for at least ReserveSubmissionSeconds
before they must submit their bids.

○ A party must deposit funds into the auction contract before bidding.

○ Deposits can be made at any time.

○ Funds can be added to an existing deposit at any time.

○ A party can initiate a withdrawal of all of its deposited funds at any time.

○ A withdrawal request submitted during round i will be claimable at round i
+ 2 or later.

○ The auction has a closing time.

○ The closing time is determined by AuctionClosingSeconds.

○ The default value of AuctionClosingSeconds is 15 seconds.

Trail of Bits 25 Offchain Labs Timeboost Security Assessment
PUBLIC



○ Any party can submit a bid to the auctioneer via RPC until closing time.

○ A “bid” contains (chainID, auctionContractAddress, roundNumber,
bid, expressLaneControllerAddress, signature) where:

■ chainID is the chain ID of the target chain

■ auctionContractAddress is the address of the auction contract the
bid is to be submitted to

■ roundNumber is the round being bid for (i.e., the current round + 1)

■ bid is the value the party is offering to pay

■ expressLaneControllerAddress is the address to set as the
express lane controller if their bid is successful

■ signature is the signature of the bidder's private key across all other
items in the tuple

○ If two or more bids meet the reserve price and the bidders have sufficient
deposits for their bids, the auctioneer will:

■ call resolveAuctionMultiBid, passing the two highest bids

■ if the two bids tie, they are sorted by keccak256(bidder address,
byte-string of bid)

■ the contract verifies:

● the signatures of both bids

● both bids are signed by different addresses

● both bids are backed by funds deposited in the contract

● both bids meet the reserve price

■ the contract deducts the second-highest bid from the account of the
highest bidder

■ the funds are transferred to a beneficiary account or burned

● governance specifies the beneficiary or if the tokens are to be
burned

■ the expressLaneControllerAddress address from the highest bid
will be the ELC for the round

Trail of Bits 26 Offchain Labs Timeboost Security Assessment
PUBLIC



○ If exactly one bid meets the reserve price and the bidder has sufficient
deposits for its bid:

■ the auctioneer will call resolveAuctionSingleBid, passing the
single bid

■ the contract verifies:

● the signature of the bid

● the bid is backed by funds deposited in the contract

● the bid meets the reserve price

■ the contract deducts the reserve price from the account of the bidder

■ the funds are transferred to a beneficiary account or burned

● governance specifies the beneficiary or if the tokens are to be
burned

■ the expressLaneControllerAddress address from the highest bid
will be the ELC for the round

○ If there are no bids that meet the reserve price or have sufficient deposits for
their bids

■ the auctioneer will call no functions

■ no address will be the ELC for the round

○ A round lasts RoundDurationSeconds seconds.

○ The next round begins when the current one ends.

○ For a round that becomes active at time t:

■ the auctioneer closes the round between timestamps t -
AuctionClosingSeconds and t

■ the auctioneer is trusted to follow the instructions above

■ this may designate a party as the ELC for the round

■ if an ELC is designated, funds are deducted from that party's deposit
account

■ the deducted funds are distributed or burned

Trail of Bits 27 Offchain Labs Timeboost Security Assessment
PUBLIC



■ at any time between being designated the ELC and the end of the
round (i.e., t + RoundDurationSeconds), the ELC can transfer the
ELC right for that round to a different address

● the previous ELC retains no rights once transferred

● this can be done multiple times per round, as long as it is
executed by the then-current ELC

■ at t + RoundDurationSeconds, the sequencer stops accepting
express lane messages for the round

Trail of Bits 28 Offchain Labs Timeboost Security Assessment
PUBLIC


