
11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 1/57

Arbitrum Nitro Smart
Contracts

Date May 2022

Auditors
Dominik Muhs, Martin
Ortner

1 Executive Summary
This report presents the results of our engagement with Arbitrum to review the
Nitro Smart Contract Systems.

The review was conducted over 7 weeks, from 25 Apr 2022 to 24 Jun 2022. A
total of 63 person-days were spent.

Section 5 - Smart Contracts presents the �indings in-scope for this security
review. In addition to the core part of the system, the smart contracts, the
system is comprised of off-chain components written in Rust and Golang. The
off-chain components were out-of-scope for this review. However, the
assessment team chose to communicate �indings encountered along tracing
the data/activity �low from the enduser/validator, into the Arbitrum node, the
prover, and �inally the smart contracts in a separate section of this report.
Relevant out-of-scope �indings can be found in Section 6 - Other Code.

2 Scope

AUDITS FUZZING SCRIBBLE ABOUT

https://consensys.net/diligence
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 2/57

Our review focused on the �iles in contracts/src of github/OffchainLabs/Nitro @
ae5c3ba600e6bd41b0e3a5090179f5f63cae6bb0.

The client provided the following information:

The contracts are divided into several folders:

bridge : This folder contains the L1 contracts handling messaging, both L1-
>L2 and L2->L1.

Bridge itself is a core contract in both L1->L2 and L2->L1, but it usually
isn’t accessed by users directly. It’s largely unchanged from our Classic
contracts.

Inbox (also known as the “delayed inbox”) is the user-facing contract for
submitting L1->L2 messages. It’s largely unchanged from our Classic
contracts, aside from additional safety checks on retryable submission.

SequencerInbox is used by the sequencer to post its batches to L1. It’s the
source of truth for the canonical message order, and contains a
forceInclusion method to let users force the advancement of the
delayed inbox in case the sequencer fails to sequence delayed
messages within its time bounds. It’s largely rewritten from our Classic
contracts to allow for more e�icient batching, as we’ve removed the
need for “segments” which previously subdivided batches.

Outbox is the user-facing contract used to execute L2->L1 messages. It’s
changed from our Classic contracts, as now a send merkle accumulator
comprises the entire history of all L2->L1 messages, which differs from
the previous approach wherein each merkle tree has unique messages.

challenge : This folder contains the challenge manager (but not the core “one
step proof” component that resolves the �inal execution dispute).
ChallengeManager is entirely rewritten from Classic. Instead of challenges
being separate contract deployments, ChallengeManager now manages all
challenges. We’re primarily looking for the following types of issues:

A way to make a challenge last for longer than the initial
asserterTimeLeft + challengerTimeLeft (note that both parties to the
challenge may be malicious)

https://github.com/OffchainLabs/nitro/tree/ae5c3ba600e6bd41b0e3a5090179f5f63cae6bb0/contracts/src

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 3/57

A way to bisect to an assertion compatible with your opponent (e.g. the
challenge starts with party A asserting state 1, party B challenges with
state 2, but then party A somehow challenges with the same state 2,
leaving B no way to win)

A way to win the challenge without the opponent’s clock expiring. Note
that the _currentWin function currently forces a timeout instead of
immediately declaring a winner, so that if we lose a challenge, we can
�ix the issue via a smart contract upgrade instead of an incorrect
assertion instantly taking effect.

osp : This folder contains the “one step proof” contracts, which execute a
single step of the Nitro machine. The entrypoint in OneStepProofEntry takes
a previous machine hash, a step count, a max message count, and a proof.
After deserializing the top level machine and the current module, it calls out
to the appropriate instruction evaluator contract. For the purposes of this
audit, we don’t think it’d be worthwhile to audit the entire Nitro proving
system, so we’re primarily interested in any circumstance in which a given
previous machine hash could lead to two different output machine hashes
(assuming of course that the inbox state, machine step count, and max
message count are �ixed).

state : This folder contains libraries used by the one step proof contracts to
deserialize and hash the Nitro machine’s state.

rollup : This contains the Rollup contract (along with a few other utilities),
which is responsible for managing L1’s view of the L2 state, via staking and
challenges.

Compared to the Classic contracts, we’ve switched from each Node (a
potential L2 state) being its own contract deployment to simply being a
struct in a mapping. We’ve also modi�ied what L2 state is to match the
Nitro model.

We’ve also replaced our Rollup user and admin logic proxy with a more
standard version based on OpenZeppelin’s ERC1967Upgrade proxy. The
implementation of this is in ../libraries/ArbitrumProxy.sol. Note that the
RollupAdminLogic is only accessible to admins, and thus does not need
access checks. We currently don’t check for contract existence in our

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 4/57

_implementation() implementation, but we are considering adding that
check: https://github.com/OffchainLabs/nitro/issues/423

We’re primarily looking for an issue where an adversary creates an
assertion and is unable to be challenged (including if it is con�irmed
quicker than the expected con�irmation delay), or where an adversary is
able to delay progression of the rollup without losing their stake.

libraries : This folder contains various libraries used by other contracts

mocks and test-helpers : These are exclusively used for testing and can be
ignored

node-interface and precompiles : These are just Solidity interfaces to native Go
code and can be ignored

2.1 Objectives

Together with the Arbitrum team, we identi�ied the following priorities for our
review:

�. Identify vulnerabilities and weaknesses relating to the passing of messages
between L1 and L2.

�. Review the token bridge and other peripherals to ensure the security of
funds locked in escrow.

�. Analyze potential malicious validator behavior and validate that the
challenge process cannot be manipulated without punishment.

�. Ensure that the system is implemented consistently with the intended
functionality and without unintended edge cases.

�. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classi�ication Registry.

3 System Overview
This section describes the top-level/deployable contracts, their inheritance
structure and interfaces, actors, permissions and important contract

https://github.com/OffchainLabs/nitro/issues/423
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 5/57

interactions of the system under review. Please refer to Section 4 - Security
Speci�ication for a security-centric view on the system.

Contracts are depicted as boxes. Public reachable interface methods are
outlined as rows in the box. The 🔍 icon indicates that a method is declared as
non-state-changing (view/pure) while other methods may change state. A yellow
dashed row at the top of the contract shows inherited contracts. A green
dashed row at the top of the contract indicates that that contract is used in a
usingFor declaration. Modi�iers used as ACL are connected as yellow bubbles in
front of methods.

3.1 Arbitrum Nitro Core Architecture

Bridge
OwnableUpgradeable

DelegateCallAware

IBridge

AddressUpgradeable

initialize

🔍 allowedInboxes

🔍 allowedOutboxes

💰 enqueueDelayedMessage

executeCall

setInbox

setOutbox

🔍 messageCount

initializeronlyDelegated

onlyOwner

onlyOwner

Inbox
DelegateCallAware

PausableUpgradeable

IInbox

pause

unpause

initialize

postUpgradeInit

sendL2MessageFromOrigin

sendL2Message

💰 sendL1FundedUnsignedTransaction

💰 sendL1FundedContractTransaction

sendUnsignedTransaction

sendContractTransaction

🔍 calculateRetryableSubmissionFee

💰 depositEth

💰 createRetryableTicketNoRefundAliasRewrite

💰 createRetryableTicket

💰 unsafeCreateRetryableTicket

onlyOwner

onlyOwner

initializer onlyDelegated

onlyDelegatedonlyProxyOwner

whenNotPaused

whenNotPaused

whenNotPaused

whenNotPaused

whenNotPaused

whenNotPaused

whenNotPaused

whenNotPaused

whenNotPaused

whenNotPaused

Outbox
DelegateCallAware

IOutbox

initialize

updateSendRoot

🔍 l2ToL1Sender

🔍 l2ToL1Block

🔍 l2ToL1EthBlock

🔍 l2ToL1Timestamp

🔍 l2ToL1BatchNum

🔍 l2ToL1OutputId

executeTransaction

🔍 calculateItemHash

🔍 calculateMerkleRoot

onlyDelegated

SequencerInbox
DelegateCallAware

GasRefundEnabled

ISequencerInbox

initialize

addSequencerL2BatchFromOrigin

forceInclusion

addSequencerL2Batch

🔍 batchCount

setMaxTimeVariation

setIsBatchPoster

onlyDelegated

refundsGasWithCalldata

refundsGasNoCalldata

ChallengeManager
DelegateCallAware

IChallengeManager

GlobalStateLib

MachineLib

ChallengeLib

🔍 challengeInfo

initialize

createChallenge

bisectExecution

challengeExecution

oneStepProveExecution

timeout

clearChallenge

🔍 currentResponder

🔍 currentResponderTimeLeft

🔍 isTimedOut

OwnableUpgradeable
Initializable

ContextUpgradeable

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

PausableUpgradeable
Initializable

ContextUpgradeable

🔍 paused

Inbox

Outbox

Each `Inbox` contract provides a mechanism for putting a message into the
low level inbox maintained by the bridge. The `Inbox` is responsible for
controlling what types of messages can be included, in some cases by
maintaining L1 restrictions on who can send certain messages. The `Inbox`
is also responsible for ensuring the data availability of the messages it
delivers.

Each `Outbox` contract is able to send messages acting as the bridge
contract, including controlling whatever Ether is held in the rollup chain.
The standard `Outbox` receives commitments to trees of outgoing messages
from the Rollup chain. Then users can redeem receipts in that tree in order
to trigger the execution of the contained transaction with the `Bridge` as
the sender.

BridgeCreator
Ownable

__constr__

updateTemplates

createBridge

Ownable

onlyOwner

Ownable
Context

__constr__

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

deploys Bridge, SequencerIbx, Inbox, RollupEventBridge, Outbox templates and proxies

Bridge Factory

deploys

TransparentUpgradeableProxy

Bridge

SequencerInbox Inbox

RollupEventBridge

Outbox

ownership transferred to Rollup

every contract is TransparentUpgradeableProxy !

ValidatorUtils
NodeLib

🔍 findStakerConflict

🔍 checkDecidableNextNode

🔍 requireRejectable

🔍 requireConfirmable

🔍 refundableStakers

🔍 latestStaked

🔍 stakedNodes

🔍 findNodeConflict

🔍 getStakers

🔍 timedOutChallenges

🔍 areUnresolvedNodesLinear

ValidatorWalletCreator
Ownable

__constr__

setTemplate

createWallet

Ownable

onlyOwner

Ownable
Context

__constr__

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

TransparentUpgradeableProxy

ValidatorWallet
OwnableUpgradeable

DelegateCallAware

Address

initialize

💰 executeTransactions

💰 executeTransaction

timeoutChallenges

initializer onlyDelegated

onlyOwner

onlyOwner

onlyOwner

OwnableUpgradeable
Initializable

ContextUpgradeable

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

RollupCreator
Ownable

__constr__

setTemplates

createRollup

Ownable

onlyOwner

Ownable
Context

__constr__

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

TransparentUpgradeableProxy

ChallengeManager

deploys

Rollup Factory

deploys

ProxyAdmin
Ownable

🔍 getProxyImplementation

🔍 getProxyAdmin

changeProxyAdmin

upgrade

💰 upgradeAndCall

onlyOwner

onlyOwner

onlyOwner

Ownable
Context

__constr__

🔍 owner

renounceOwnership

transferOwnership

onlyOwner

onlyOwner

owner is createRollup(config.owner)

ArbitrumProxy
AdminFallbackProxy

__constr__AdminFallbackProxy

AdminFallbackProxy
Proxy

DoubleLogicERC1967Upgrade

💰 __constr__

Proxy

💰 __constr__

💰
fallback

deploys

RollupEventBridge
IMessageProvider

DelegateCallAware

initialize

rollupInitialized

onlyDelegated

onlyRollup

Rollup

RollupAdminLogic
RollupCore

IRollupAdmin

SecondaryLogicUUPSUpgradeable

initialize

setOutbox

removeOldOutbox

setInbox

pause

resume

setValidator

setOwner

setMinimumAssertionPeriod

setConfirmPeriodBlocks

setExtraChallengeTimeBlocks

setBaseStake

setStakeToken

setSequencerInboxMaxTimeVariation

setIsBatchPoster

upgradeBeacon

forceResolveChallenge

forceRefundStaker

forceCreateNode

forceConfirmNode

setLoserStakeEscrow

setWasmModuleRoot

onlyProxyinitializer

whenPaused

whenPaused

whenPaused

whenPaused

whenPaused

RollupCore
IRollupCore

PausableUpgradeable

NodeLib

GlobalStateLib

🔍 getNode

🔍 nodeHasStaker

🔍 getStakerAddress

🔍 isStaked

🔍 isStakedOnLatestConfirmed

🔍 latestStakedNode

🔍 currentChallenge

🔍 amountStaked

🔍 getStaker

🔍 zombieAddress

🔍 zombieLatestStakedNode

🔍 zombieCount

🔍 isZombie

🔍 withdrawableFunds

🔍 firstUnresolvedNode

🔍 latestConfirmed

🔍 latestNodeCreated

🔍 lastStakeBlock

🔍 stakerCount

PausableUpgradeable
Initializable

ContextUpgradeable

🔍 paused

SecondaryLogicUUPSUpgradeable
UUPSUpgradeable

DoubleLogicERC1967Upgrade

🔍 proxiableUUID

upgradeSecondaryTo

💰 upgradeSecondaryToAndCall

notDelegated

onlyProxy

onlyProxy

UUPSUpgradeable
IERC1822Proxiable

ERC1967Upgrade

🔍 proxiableUUID

upgradeTo

💰 upgradeToAndCall

notDelegated

onlyProxy

onlyProxy

AbsRollupUserLogic
RollupCore

UUPSNotUpgradeable

IRollupUserAbs

IChallengeResultReceiver

NodeLib

GlobalStateLib

🔍 isERC20Enabled

rejectNextNode

confirmNextNode

stakeOnExistingNode

stakeOnNewNode

returnOldDeposit

reduceDeposit

createChallenge

completeChallenge

removeZombie

removeOldZombies

🔍 requiredStake

🔍 currentRequiredStake

🔍 countStakedZombies

🔍 countZombiesStakedOnChildren

🔍 requireUnresolvedExists

🔍 requireUnresolved

withdrawStakerFunds

onlyValidator whenNotPaused

onlyValidator whenNotPaused

onlyValidator whenNotPaused

onlyValidator whenNotPaused

onlyValidator whenNotPaused

onlyValidator whenNotPaused

onlyValidator whenNotPaused

whenNotPaused

onlyValidator whenNotPaused

onlyValidator whenNotPaused

RollupCore
IRollupCore

PausableUpgradeable

NodeLib

GlobalStateLib

🔍 getNode

🔍 nodeHasStaker

🔍 getStakerAddress

🔍 isStaked

🔍 isStakedOnLatestConfirmed

🔍 latestStakedNode

🔍 currentChallenge

🔍 amountStaked

🔍 getStaker

🔍 zombieAddress

🔍 zombieLatestStakedNode

🔍 zombieCount

🔍 isZombie

🔍 withdrawableFunds

🔍 firstUnresolvedNode

🔍 latestConfirmed

🔍 latestNodeCreated

🔍 lastStakeBlock

🔍 stakerCount

PausableUpgradeable
Initializable

ContextUpgradeable

🔍 paused

UUPSNotUpgradeable
IERC1822Proxiable

DoubleLogicERC1967Upgrade

🔍 proxiableUUIDnotDelegated

RollupUserLogic
AbsRollupUserLogic

IRollupUser

🔍 initialize

💰 newStakeOnExistingNode

💰 newStakeOnNewNode

💰 addToDeposit

withdrawStakerFunds

onlyProxy

onlyValidator whenNotPaused

onlyValidator whenNotPaused

ERC20RollupUserLogic
AbsRollupUserLogic

IRollupUserERC20

🔍 initialize

newStakeOnExistingNode

newStakeOnNewNode

addToDeposit

withdrawStakerFunds

onlyProxy

onlyValidator whenNotPaused

onlyValidator whenNotPaused

ArbitrumProxy
AdminFallbackProxy

__constr__AdminFallbackProxy

AdminFallbackProxy
Proxy

DoubleLogicERC1967Upgrade

💰 __constr__

Proxy

💰 __constr__

💰
fallback

implementation()
secondaryImplementation()

decides to present Admin or User "Facets"
DELEGATED to

Admin FunctionalityUser Functionality (default)

onlyRollup (check)

arbitrary bridge calls on L1

anyone

onlyKnownOutboxes (check)

onlyRollup (check)

onlyRollup (check)

Validator Node

secondary slot

primary slot?

primary slot

onlyDelegated

takeTurn

takeTurn

takeTurn

challengeMgr

Rollup

Rollup

allowedInboxes

Arbitrum Nitro Core Architecture

3.2 Arbitrum Nitro Challenge Statemachine

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/img/tm_arbitrum_nitro.svg

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 6/57

Arbitrum Nitro Challenge Statemachine

3.3 Arbitrum Nitro OSP Deserialization
Machine

MachineFields

Status

ValueStack

InternalStack

BlockStack

FrameStack

GlobalStateHash

ModuleIDX

FunctionIDX

FunctionPC

ModulesRoot

Module

globalMerkleRoot

moduleMemory

tablesMerkleRoot

functionsMerkleRoot

internalOffset

RUN, FIN, ERR, FAR

funcProof(instrProof())

Machine Module modProof Instruction instrProof funcProof proof-data

selected proover

Prover Selection

HostIO

Math

Mem

prover0

defines which prover to use

deserialization

result

decoded state

prover execution

0xabcdef....

Arbitrum Nitro One Step Proof Deserialization

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/img/arbitrum-challenge-statemachine.png
https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/img/tm_arbitrum_nitro_osp.svg

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 7/57

4 Security Specification
This section describes, from a security perspective, the system’s expected
behavior under review, particularly the Rollup-related smart contracts. It is not a
substitute for documentation. This section aims to identify speci�ic security
properties and outline trust assumptions. While the security impact of the trust
model notes is limited, they contain information that should be considered for
the system’s continued security.

Admin

The rollup admin (a multisig, acc. to the client) is set by setting the
Config.owner parameter in the RollupCreator factory. The owner (and proxy

owner) is in a very exposed position (risk) as it can theoretically take over
complete control of the Bridge contract (upgrade the contract, update
settings), therefore, indirectly giving the admin access to all the escrowed
funds.

The rollup admin controls who can interact with the Rollup user
functionalities (onlyValidator modi�ier).

It is a closed system right now that is controlled by the rollup admin ((a)
via access restrictions con�igurable by the Admin, (b) via pausable, (c)
the main rollup contracts being upgradeable/proxied).

The Admin decides who can challenge/con�irm/reject block
submissions that might undermine trust in the system. e.g.,
createChallenge can only be called by onlyValidator . That list is manually

maintained by the Rollup Admin, while the initial assumption was that
anyone should be able to call out malicious behavior and force a
challenge.

System properties can be changed anytime with little input validation via
the RollupAdminLogic contract (risk of miscon�iguration).

The Admin can interfere with challenges up to a point where they can force
a challenge outcome (forceResolveChallenge).

The Admin can forceCreateNode and forceConfirmNode to submit an
unchallengeable block.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 8/57

The Admin can pause the user functionalities. A similar effect might be
created by an admin removing everyone from the onlyValidator access list.

The contract can be upgraded due to the use of a proxy pattern. However,
an admin can also change the Admin and User contracts while in use.

An admin can basically upgrade the contract to run any code.

An admin may interfere with users by unexpectedly upgrading user
functionality while interacting with the system. Consider only allowing
upgrades while the contract is paused.

The ownership transfer is one-step which might pose a signi�icant risk of
losing access to the contract.

If this is miscon�igured, the contract carrying the admin logic will not
be callable anymore.

System parameter changes are not always sanity-checked, increasing the
risk for inconsistent con�igurations.

Parameter changes may interfere with users and block them from
participating in the system’s sub-processes, such as challenges.

For example, a miscon�iguration of confirmPeriodBlocks to zero may allow
anyone to initialize the contract again, setting a malicious admin facet,
gaining control of the bridge, and/or destroying the Rollup contract.

setBaseStake allows setting a staking requirement of zero, which may
harm the system’s security. Furthermore, the baseStake should be
multiple times higher than the minimum gas required for one party to
resolve a challenge, or else this may open up a grie�ing vector.

onlyValidator/User

Can add newStake to become Staker.

Race: might block confirmNextNode if stake joins just before the con�irm call
(might be intentional, grie�ing). A malicious stake can grief confirmNextNode

and may grief for removal with zero risk by not taking on the latest valid tip.
Note that the longer someone delays block con�irmation, the higher the
stake requirements.

Anyone can remove a new Staker immediately by calling returnOldDeposit if
they don’t bundle their call to newStake with stakeOnExisting / stakeOnNewNode .

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 9/57

A zombie cannot be a Staker unless they are removed from their Zombie
status.

Can add funds to any existing Staker. Usually, only the staker themselves
would do this.

Can confirmNextNode if block deadlines are met, and all stakers are staked on
the next node, i.e., everyone agrees.

Can be blocked by a single staker not advancing their stake to a new
tip.

Can rejectNextNode if block deadlines expired and the node does not point to
lastConfirmed or no staker is staked.

Can returnOldDeposit on any Staker (grie�ing: when called on new staker that
does not stake on the tip).

Can createChallenge for competing nodes.
A challenge is created in the ChallengeManager contract, and
challengers are proving their nodes. First through bisection over the
block numbers, then through bisection over the execution traces.
Finally, by retracing a single state transition, the challenge manager
resolves the challenge by submitting the result via completeChallenge .

Note: It is assumed that this method should not be restricted to
onlyValidator given that anyone should be able to challenge
misbehavior.

Can removeZombie .
Removes a given zombie from nodes it is staked on.

Can removeOldZombies .
Remove zombies whose latest stake is earlier than the �irst unresolved
node.

Can withdrawStakerFunds .
Stake that can be withdrawn (e.g., because returnOldDeposit or
reduceStake were called) is accounted for internally until
withdrawStakerFunds is called, allowing a staker to pull their stake off the

system.

Staker

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 10/57

Note: Stakers should always stake way ahead of lastConfirmed node, or else they
might open themselves up to an attack where anyone can call returnOldDeposit

on them if they are only staked on lastConfirmed .

Can stakeOnExistingNode (supporting a validated rollup block).

Must stake on all previous nodes (or new staker).
Staker can optimize if too far off the tip by removing and re-adding
themselves as staker (automatically stakes them on latestConfirmed) to
stake at the new validated tip.

Can stakeOnNewNode (submitting a rollup block).
Assumes the previous node is lastStakedNode.

Can reduceDeposit to the minimum required stake at that moment.

Can “block” node con�irmation by not staking at the newly agreed tip.
May be challenged if they disagree on the new tip.

May be removed from stakers via returnOldDeposit if they do not advance
to the new tip .

Challenge contract (called on challenge end)

Calls completeChallenge with the challenge’s �inal verdict.
1/2 of the loser stake is credited to the winner (accounted as stake for
the winner).

1/2 of the loser stake is credited to the loserStakeEscrow address set in
the Rollup contract system.

The amount of stake that can be slashed from the loser is capped at the
amount the winner has staked (excess is refunded to the loser).

Loser is turned into a zombie and loses its Staker status.

Zombie

Cannot participate in the system until they’re removed from the zombie list.

5 Smart Contracts
Each issue has an assigned severity:

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 11/57

Minor issues are subjective in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
�ixed.

5.1 Invalid assertions can be confirmed by frontrunning
pause/unpause calls Major

Description

The rollup contract contains admin logic that allows authorized parties to pause
and resume the system’s operations:

code/contracts/src/rollup/RollupAdminLogic.sol:L117-L120

function pause() external override {
 _pause();
 emit OwnerFunctionCalled(3);
}

code/contracts/src/rollup/RollupAdminLogic.sol:L125-L128

function resume() external override {
 _unpause();
 emit OwnerFunctionCalled(4);
}

Consequently, the validator’s ability to con�irm, reject, or create nodes is paused
as well. This includes the function to initiate challenges since it requires the
contract to be unpaused.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 12/57

code/contracts/src/rollup/RollupUserLogic.sol:L245-L254

function createChallenge(
 address[2] calldata stakers,
 uint64[2] calldata nodeNums,
 MachineStatus[2] calldata machineStatuses,
 GlobalState[2] calldata globalStates,
 uint64 numBlocks,
 bytes32 secondExecutionHash,
 uint256[2] calldata proposedTimes,
 bytes32[2] calldata wasmModuleRoots
) external onlyValidator whenNotPaused {

By frontrunning an admin’s transaction to pause the rollup contract, an attacker
is able to create a new node containing a wrong assertion. Other validators
noticing the state inconsistency will be unable to create a challenge since the
system is paused directly after.

Under the assumption that the system is paused just as long or longer than the
block con�irmation time, its containing node can be con�irmed right away by
the attacker by backrunning the admin’s transaction calling resume .

An exacerbating factor to this issue is that an admin can change the rollup
contract’s settings in a way that lowers the block con�irmation time period to a
value that makes this attack feasible even for short “emergency pauses”.

Recommendation

Right after calling resume , an admin must validate the latest chain head’s correct
execution and force the creation and con�irmation of the latest node, referring
to the last known good state. This process should be done atomically to prevent
accidental or potentially malicious interference. Uncon�irmed nodes before
pausing should be regarded with the utmost scrutiny, or even discarded.

It can also be feasible to measure the pause time frame and add it on top of the
block con�irmation window.

5.2 Bridge - L2->L1 value call might lock ETH at bridge if
destination is not a contract Major

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 13/57

Description

On L1/Ethereum mainnet, it is accepted and reasonably common to have an ETH

value transfer with accompanying data (calldata.length != 0). The recipient is
credited the ETH value, and calldata is not being executed.

When transferring value via a cross-chain L2->L1 contract call from the Arbitrum
to the Ethereum chain, it is required that the L1 destination is a contract for the
call to be executed successfully. If calldata was provided, e.g., a note sent with
the transaction, and the L1 destination is not a contract, Bridge.executeCall() will
revert, and the funds become unspendable.

Furthermore, a user cannot easily unlock the now locked value call unless
Arbitrum decides to upgrade their Bridge contract or someone deploys code to
the expected destination. The outbox entry has already been created and
cannot be rolled back since the dispute window has already passed. Rolling
back would not be an option because there is no reason to move back from a
protocol perspective. Unfortunately, we could not locate any mention of this in
the Arbitrum documentation.

This scenario might open up more attack vectors where someone’s L2->L1
contract call with a value to a speci�ic contract might be front-run. Note that
there is plenty of time for someone to seek opportunities as L2->L1 calls are
subject to a dispute period delay. An attacker can lock up the funds (grie�ing). In
general, we suggest only performing L2->L1 contract calls with value if the caller
can be con�ident that the L1 call cannot be forced to revert by a 3rd party.

Consider the trade-off between the following two scenarios:

�. Users might rely on the current behavior as a feature to lock up transactions
until a contract is deployed at a speci�ic contract address. This can be used
for counterfactual wallets or dynamic CREATE2 deployments.

�. The current behavior categorically excludes use-cases where tx.data is set
on value transfers. Furthermore, rebasing protocols and other migrating
systems that self-destruct their previous deployments will result in funds
being locked.

https://developer.offchainlabs.com/docs/l1_l2_messages

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 14/57

Note that there is no reliable way for L2 to check if the L1 transaction would go
through (in x days after the mandatory delay).

Examples

code/contracts/src/bridge/Bridge.sol:L110-L118

function executeCall(
 address to,
 uint256 value,
 bytes calldata data
) external override returns (bool success, bytes memory returnData) {
 if (!allowedOutboxesMap[msg.sender].allowed) revert NotOutbox(msg.sender);
 if (data.length > 0 && !to.isContract()) revert NotContract(to);
 address prevOutbox = activeOutbox;
 activeOutbox = msg.sender;

Recommendation

Consider providing a way for users to redeem their stuck L2->L1 transaction back
to L2 if it always reverts. Make information available that describes the caveats
of L2->L1 value transfers and provides guidance for the safe use of cross-chain
contract interaction with value.

5.3 Admin function forceRefundStaker does not honor
staker’s state Medium

Description

In the RollupAdminLogic contract, the forceRefundStaker function allows authorized
parties to unlock the funds of a given list of stakers and turn them into zombies.

This admin method fails to take into account the individual staker’s state since
they might be involved in a challenge at any given point in time. Assuming
stakers A and B, where A is malicious, the following line of events is possible:

�. A challenge between A and B is initiated due to a malicious state transition
performed by A.

�. The challenge progresses, and staker A is unable to respond anymore.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 15/57

�. An admin calls the forceRefundStaker function and (among other addresses)
converts A into a zombie. Their amountStaked value is set to zero. The value of
their withdrawable funds now is at least the value of their previous stake.

�. Since all of staker A’s funds have now been marked as withdrawable, they
remove all funds from the system using withdrawStakerFunds .

�. Upon passing the �inal timeout, completeChallengeImpl is called, which,
punishing the challenge’s loser, divides the stakes and turns the losing
staker into a zombie.

Staker B will not receive any rewards in the call to completeChallengeImpl as they
don’t have any actively staked funds. Furthermore, the function turnIntoZombie is
called twice (once in step 3 and once in step 5). On the �irst call, the staker’s
address is successfully removed from the _stakerMap . In the second call’s
context, _stakerMap[stakerAddress] will return an uninitialized Staker struct. Most
importantly, this will return a struct with Staker.index set to zero. Consequently,
deleteStaker is called with the wrong staker, resulting in the system deleting the

�irst staker of the core rollup contract’s list:

code/contracts/src/rollup/RollupCore.sol:L496-L503

function deleteStaker(address stakerAddress) private {
 Staker storage staker = _stakerMap[stakerAddress];
 uint64 stakerIndex = staker.index;
 _stakerList[stakerIndex] = _stakerList[_stakerList.length - 1];
 _stakerMap[_stakerList[stakerIndex]].index = stakerIndex;
 _stakerList.pop();
 delete _stakerMap[stakerAddress];
}

Recommendation

Perform a check in forceRefundStaker requiring any given staker to not be in a
challenge. This check can be accomplished by, e.g., requiring
staker.currentChallenge == 0 .

5.4 Unpredictable behavior due to immediate settings
changes Medium

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 16/57

Description

In several cases, privileged accounts can update or upgrade things in the
system without warning. Unannounced upgrades have the potential to violate
the system’s security goals.

Speci�ically, privileged roles could use front-running to make malicious changes
just ahead of con�iguration-changing transactions, or random adverse effects
could occur due to the unfortunate timing of changes.

Some instances of this issue are more signi�icant than others, but in general,
users of the system should have assurances about the behavior of the action
they’re about to take.

Examples

This issue mainly concerns the RollupAdminLogic contract where, e.g., challenge-
related parameters can be changed by an authorized party, immediately
affecting ongoing challenges. A further area of concern is the admin’s ability to
change the stake token address and the challenge loser’s escrow contract
address.

Other instances of admin con�igurable settings:

TransparentUpgradeableProxy (Bridge , Inbox , Outbox , RollupEventBridge ,
SequencerInbox , ..

Implementations of special proxies (ArbitrumProxy , AdminFallbackProxy)

Con�igurative settings e.g. in RollupAdminLogic and other contracts

Template con�iguration in factories

Recommendation

The underlying issue is that users of the system can’t be sure of a function call’s
behavior. Due to potential con�iguration changes, the behavior can change at
any time.

Consider giving users a time-locked notice of changes in advance. The �irst step
merely tells users that the system will execute a particular change. The second
step commits that change after a reasonable waiting period.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 17/57

5.5 Inbox - is pausable by Rollup but Rollup does not
implement any means to pause the contract Medium

Description

With the current system, the Inbox contract cannot be (un)paused. Pausing the
inbox contract would allow the Arbitrum team to temporarily suspend new L1-
>L2 messages (Note that the Bridge / SequencerInbox cannot be paused).

The Inbox contract is PausableUpgradeable , with the owner of the Bridge contract (
Rollup) being allowed to [un]pause the contract. However, the Rollup contract

does not implement a way to pause the Inbox contract and Rollup.pause() only
affects the Rollup contract.

Examples

onlyOwner == Rollup can call pause(), unpause()

code/contracts/src/bridge/Inbox.sol:L34-L49

modifier onlyOwner() {
 // whoevever owns the Bridge, also owns the Inbox. this is usually the rollup
 address bridgeOwner = Bridge(address(bridge)).owner();
 if (msg.sender != bridgeOwner) revert NotOwner(msg.sender, bridgeOwner);
 _;
}

/// @notice pauses all inbox functionality
function pause() external onlyOwner {
 _pause();
}

/// @notice unpauses all inbox functionality
function unpause() external onlyOwner {
 _unpause();
}

Bridge(address(bridge)).owner() is the Rollup contract.

code/contracts/src/rollup/BridgeCreator.sol:L109-L111

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 18/57

frame.delayedBridge.setInbox(address(frame.inbox), true);
frame.delayedBridge.transferOwnership(rollup);

RollupAdmin.[un]pause() pauses the rollup. It does not implement a way to
(un)pause the inbox.

code/contracts/src/rollup/RollupAdminLogic.sol:L112-L128

/**
 * @notice Pause interaction with the rollup contract.
 * The time spent paused is not incremented in the rollup's timing for node valid
 */
function pause() external override {
 _pause();
 emit OwnerFunctionCalled(3);
}

/**
 * @notice Resume interaction with the rollup contract
 */
function resume() external override {
 _unpause();
 emit OwnerFunctionCalled(4);
}

Recommendation

In the RollupAdminLogic contract, implement means to [un]pause the Inbox

contract or remove the functionality. Provide guarantees that the team will
unpause a paused contract at some point (timelock, document that the team
can inde�initely pause the bridge).

5.6 AdminFallbackProxy - Name, Layout, Functionality Medium

Description

Various aspects of the system’s proxy setup do not adhere to best practices and
introduce redundant overhead, reducing readability and increasing the potential

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 19/57

for human error.

Fallback implementation names add signi�icant cognitive overhead

primary and secondary have a special meaning in the context of this system and
should be named explicitly as user- and admin-related routes.
implementation.primary is the privileged admin route. At the same time,
implementation.secondary is the fallback user-facing route. It also is a little counter-

intuitive to have the admin route be the primary route, while in 99% of cases, the
second route will be used.

code/contracts/src/libraries/AdminFallbackProxy.sol:L123-L129

assert(
 _IMPLEMENTATION_SECONDARY_SLOT ==
 bytes32(uint256(keccak256("eip1967.proxy.implementation.secondary")) -
);
_changeAdmin(adminAddr);
_upgradeToAndCall(adminLogic, adminData, false);
_upgradeSecondaryToAndCall(userLogic, userData, false);

We understand that there is a desire to keep this implementation as close as
possible to the ERC1967 proxy, extending it to work with two fallback routes.
However, given that the routes are not equal, with one being a privileged back-
end, it is suggested to name them as such to avoid confusion.

For example, it is not immediately clear that _upgradeToAndCall() upgrades the
admin implementation and _upgradeSecondaryToAndCall() upgrades the user
implementation.

Rename ArbitrumProxy

The name ArbitrumProxy is misleading from an end-user perspective. It acts as
the Rollup contract.

Consider renaming ArbitrumProxy by picking a more intuitive name like
RollupProxy .

code/contracts/src/libraries/ArbitrumProxy.sol:L10-L20

https://docs.openzeppelin.com/contracts/4.x/api/proxy#erc1967

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 20/57

contract ArbitrumProxy is AdminFallbackProxy {
 constructor(Config memory config, ContractDependencies memory connectedCont
 AdminFallbackProxy(
 address(connectedContracts.rollupAdminLogic),
 abi.encodeWithSelector(IRollupAdmin.initialize.selector, config, co
 address(connectedContracts.rollupUserLogic),
 abi.encodeWithSelector(IRollupUserAbs.initialize.selector, config.s
 config.owner
)
 {}
}

ArbitrumProxy source-unit location

Considering that ArbitrumProxy is the main Rollup contract it can be confusing to
�ind it in the libraries sub-directory (/contracts/src/libraries/ArbitrumProxy.sol).

Consider moving the source unit to the rollup sub-directory as it is not a library
but a top-level deployed contract.

SecondaryLogicUUPSUpgradeable.proxiableUUID returns the primary slot

The module SecondaryLogicUUPSUpgradeable implements logic to upgrade the
secondary implementation. However, the function
SecondaryLogicUUPSUpgradeable.proxiableUUID() would return the primary

implementation’s UUID. This feels counterintuitive even though required right
now as otherwise SecondaryLogicUUPSUpgradeable.proxiableUUID would override
UUPSUpgradeable.proxiableUUID reference to the primary implementation (admin slot).

Consider renaming the method to
SecondaryLogicUUPSUpgradeable.proxyableSecondaryUUID() to provide means to return the

secondary’s UUID and avoid overriding it via the contract inheritance structure.

code/contracts/src/libraries/SecondaryLogicUUPSUpgradeable.sol:L14-L16

function proxiableUUID() external view override notDelegated returns (bytes32)
 return _IMPLEMENTATION_SLOT;
}

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 21/57

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 22/57

DoubleLogicERC1967Upgrade supports a beacon slot for the primary implementation
only

ERC1967Upgrade provides means to return the beacon contract via _getBeacon() (for
the primary implementation; admin logic). The implementation for beacon
proxies in DoubleLogicERC1967Upgrade seems to be incomplete.

5.7 AdminFallbackProxy - Misleading Comment -
ERC1967.admin cannot be set to zero address Minor

Resolution

This issue has been addressed by revising the comment with
OffchainLabs/nitro#564.

Description

// if the admin is disabled (set to addr zero), all calls will be forwarded
to user logic

https://github.com/OffchainLabs/nitro/pull/564

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 23/57

The comment suggests that the admin address can be set to address(0) while
ERC1967.changeAdmin() -> ERC1967._setAdmin() does not allow that.

code/contracts/src/libraries/AdminFallbackProxy.sol:L132-L137

/// @inheritdoc Proxy
function _implementation() internal view override returns (address) {
 require(msg.data.length >= 4, "NO_FUNC_SIG");
 // if the sender is the proxy's admin, delegate to admin logic
 // if the admin is disabled (set to addr zero), all calls will be forwarded t
 address target = _getAdmin() != msg.sender

Recommendation

Revise the comment.

5.8 AdminFallbackProxy - Misleading Comment - admin is not
secondary logic Minor

Description

A reference to the admin logic is stored in the primary implementation slot, the
user logic in the secondary. However, the following comment confuses the slot
usage:

code/contracts/src/libraries/AdminFallbackProxy.sol:L145-L152

/**
 * @dev unlike transparent upgradeable proxies, this does allow the admin to fall
 * the admin is expected to interact only with the secondary logic contract, whic
 * upgrades using the UUPS approach
 */
function _beforeFallback() internal override {
 super._beforeFallback();
}

[…] the admin is expected to interact only with the secondary logic
contract, […]

Also note that this implementation of _beforeFallback() is basically a NO-OP.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/afb20119b33072da041c97ea717d3ce4417b5e01/contracts/proxy/ERC1967/ERC1967Upgrade.sol#L123-L125

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 24/57

Recommendation

The comment should read:
the admin is expected to interact with the primary logic contract . We suggest avoiding

confusion by explicitly naming the slots “fallback” and “admin” implementation
(or similar; see https://github.com/ConsenSysDiligence/arbitrum-nitro-audit-
2022-04/issues/5).

5.9 Inbox - duplicate initialization check Minor

Description

The Inbox.initialize() function carries the initializer modi�ier, which enforces
that the contract can only be initialized once. Therefore, the check for
AlreadyInit() is obsolete.

This issue is also related to issue 5.11.

Examples

code/contracts/src/bridge/Inbox.sol:L51-L55

function initialize(IBridge _bridge) external initializer onlyDelegated {
 if (address(bridge) != address(0)) revert AlreadyInit();
 bridge = _bridge;
 __Pausable_init();
}

Recommendation

Either remove the initializer modi�ier or the AlreadyInit() check. Check for
function argument _bridge != address(0) instead.

5.10 Rollup - A reentrant StakeToken may allow zero-fee flash-
loans Minor

Description

The RollupUserLogic contract allows users to stake and unstake within the same
transaction context. In case a reentrant StakeToken is con�igured (i.e., ERC-777 or

https://github.com/ConsenSysDiligence/arbitrum-nitro-audit-2022-04/issues/5)

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 25/57

equivalent), a user can take a zero-fee �lash loan by performing the following
steps:

Examples

FlashLoan StakeToken from Rollup . Requires minimum stake to stay locked with
the contract.

�. Stake on a node.

�. When _newStake() pulls in the token via receiveTokens() -> token.transferFrom() ,
an ERC-777 token executes callback from.tokensToSend() before the token is
actually transferred. The new stake, however, is already credited to the
users' internal accounting.

�. In the reentrant from.tokensToSend() callback, the user calls addToDeposit() to
in�late Rollup ’s internal accounting to the desired amount. The amount can
be up to the StakeToken balance the contract holds. Note that no tokens
have been transferred yet, but the internal account credits us with the
desired amount.

�. In the next reentrant receiveTokens() -> from.tokensToSend() callback, we call
reduceDeposit() and withdrawStakerFunds() to “borrow” the stake tokens.

�. <perform flashloan action>.

�. Unwind and repay the tokens. This will return the loaned amount to Rollup

and synchronize the external with the internal accounting.

code/contracts/src/rollup/RollupUserLogic.sol:L662-L672

function newStakeOnNewNode(
 uint256 tokenAmount,
 RollupLib.Assertion calldata assertion,
 bytes32 expectedNodeHash,
 uint256 prevNodeInboxMaxCount
) external override {
 _newStake(tokenAmount);
 stakeOnNewNode(assertion, expectedNodeHash, prevNodeInboxMaxCount);
 /// @dev This is an external call, safe because it's at the end of the functi
 receiveTokens(tokenAmount);
}

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 26/57

code/contracts/src/rollup/RollupUserLogic.sol:L706-L711

function receiveTokens(uint256 tokenAmount) private {
 require(
 IERC20Upgradeable(stakeToken).transferFrom(msg.sender, address(this), t
 "TRANSFER_FAIL"
);
}

code/contracts/src/rollup/RollupUserLogic.sol:L679-L687

function addToDeposit(address stakerAddress, uint256 tokenAmount)
 external
 onlyValidator
 whenNotPaused
{
 _addToDeposit(stakerAddress, tokenAmount);
 /// @dev This is an external call, safe because it's at the end of the functi
 receiveTokens(tokenAmount);
}

code/contracts/src/rollup/RollupUserLogic.sol:L225-L232

function reduceDeposit(uint256 target) external onlyValidator whenNotPaused {
 requireUnchallengedStaker(msg.sender);
 uint256 currentRequired = currentRequiredStake();
 if (target < currentRequired) {
 target = currentRequired;
 }
 reduceStakeTo(msg.sender, target);
}

code/contracts/src/rollup/RollupUserLogic.sol:L689-L704

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 27/57

/**
 * @notice Withdraw uncommitted funds owned by sender from the rollup chain
 * @param destination Address to transfer the withdrawn funds to
 */
function withdrawStakerFunds(address payable destination)
 external
 override
 onlyValidator
 whenNotPaused
 returns (uint256)
{
 uint256 amount = withdrawFunds(msg.sender);
 // This is safe because it occurs after all checks and effects
 require(IERC20Upgradeable(stakeToken).transfer(destination, amount), "TRANS
 return amount;
}

Recommendation

Do not allow reentrant stake tokens or add a reentrancy guard to methods
potentially handling tokens with callbacks. Alternatively, require a stake to be
locked for at least one block, e.g., the delay between reducing stake and
withdrawing stake.

5.11 Inbox/Outbox - enforce effective initialization Minor

Description

It is recommended to enforce that a contract cannot stay uninitialized after
explicitly calling its initialize() method. For example, if the Outbox were to be
initialized with _rollup=address(0) , the contract could be initialized again.

Examples

code/contracts/src/bridge/Outbox.sol:L32-L36

function initialize(address _rollup, IBridge _bridge) external onlyDelegated {
 if (rollup != address(0)) revert AlreadyInit();
 rollup = _rollup;
 bridge = _bridge;
}

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 28/57

code/contracts/src/rollup/RollupEventBridge.sol:L29-L33

function initialize(address _bridge, address _rollup) external onlyDelegated {
 require(rollup == address(0), "ALREADY_INIT");
 bridge = IBridge(_bridge);
 rollup = _rollup;
}

Recommendation

Enforce that function call argument _bridge != address(0) or else the contract
stays uninitialized.

5.12 RollupUserLogic - pot. division by zero with
confirmPeriodBlocks Minor

Description

If confirmPeriodBlocks is unset or set to zero, the RollupUserLogic.currentRequiredStake()

function will revert due to a division by zero.

Neither the RollupAdminLogic.initialize nor RollupAdminLogic.setConfirmPeriodBlocks or
createRollup(..., config, ...) functions enforce that the confirmPeriodBlocks is

con�igured in a safe and non-reverting way.

Examples

code/contracts/src/rollup/RollupUserLogic.sol:L465-L467

uint256 firstUnresolvedAge = _blockNumber - firstUnresolvedDeadline;
uint256 periodsPassed = (firstUnresolvedAge * 10) / confirmPeriodBlocks;
uint256 baseMultiplier = 2**(periodsPassed / 10);

code/contracts/src/rollup/RollupAdminLogic.sol:L175-L182

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 29/57

/**
 * @notice Set number of blocks until a node is considered confirmed
 * @param newConfirmPeriod new number of blocks
 */
function setConfirmPeriodBlocks(uint64 newConfirmPeriod) external override {
 confirmPeriodBlocks = newConfirmPeriod;
 emit OwnerFunctionCalled(9);
}

Recommendation

Input Validation - check that confirmPeriodBlocks is within valid bounds.

5.13 SequencerInbox - obsolete overflow check with solidity
0.8.x Minor

Description

The SequencerInbox.formDataHash() function implements checks to detect if
fullDataLen wraps in case bytes calldata data is too large. However, solidity v0.8.x

standard arithmetic addition does not wrap unless placed in an unchecked {}

block. In case of an over�low, the code would revert before the check is
reached.

Examples

code/contracts/src/bridge/SequencerInbox.sol:L1-L5

// Copyright 2021-2022, Offchain Labs, Inc.
// For license information, see https://github.com/nitro/blob/master/LICENSE
// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.0;

code/contracts/src/bridge/SequencerInbox.sol:L202-L209

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 30/57

function formDataHash(bytes calldata data, uint256 afterDelayedMessagesRead)
 internal
 view
 returns (bytes32, TimeBounds memory)
{
 uint256 fullDataLen = HEADER_LENGTH + data.length;
 if (fullDataLen < HEADER_LENGTH) revert DataLengthOverflow();
 if (fullDataLen > MAX_DATA_SIZE) revert DataTooLarge(fullDataLen, MAX_DATA_

Recommendation

It should be safe to remove the over�low check.

5.14 MerkleLib / MerkleProofLib - Inconsistent merkle tree
depth check Minor

Description

Inconsistent max proof length checks

MerkleLib requires proof.length <= 256 while Outbox.recordOutputAsSpent() requires
proof.length < 256 . Note that Outbox.recordOutputAsSpent() calls MerkleLib , thus, the
proof.length < 256 check is always enforced.

code/contracts/src/libraries/MerkleLib.sol:L28-L34

function calculateRoot(
 bytes32[] memory nodes,
 uint256 route,
 bytes32 item
) internal pure returns (bytes32) {
 uint256 proofItems = nodes.length;
 if (proofItems > 256) revert MerkleProofTooLong(proofItems, 256);

code/contracts/src/bridge/Outbox.sol:L130-L136

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 31/57

function recordOutputAsSpent(
 bytes32[] memory proof,
 uint256 index,
 bytes32 item
) internal returns (bytes32) {
 if (proof.length >= 256) revert ProofTooLong(proof.length);

For consistency, it is suggested to perform the same max proof depth check for
both methods.

Merkle tree depth not enforced to be > 1

By indicating a zero-length proof, Deserialize.merkleProof() deserializes proof-data
into an empty array of Merkle-proof parts.

code/contracts/src/state/Deserialize.sol:L307-L320

function merkleProof(bytes calldata proof, uint256 startOffset)
 internal
 pure
 returns (MerkleProof memory merkle, uint256 offset)
{
 offset = startOffset;
 uint8 length;
 (length, offset) = u8(proof, offset);
 bytes32[] memory counterparts = new bytes32[](length);
 for (uint8 i = 0; i < length; i++) {
 (counterparts[i], offset) = b32(proof, offset);
 }
 merkle = MerkleProof(counterparts);
}

Not providing any proof steps when computing the Merkle root for a proof is
equivalent to just returning the leafHash in
computeRootUnsafe(proof, index, leafHash, prefix) . The prefix is unused, and no

additional round of hashing is performed.

code/contracts/src/state/MerkleProof.sol:L81-L98

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 32/57

// WARNING: leafHash must be computed in such a way that it cannot be a non-leaf
function computeRootUnsafe(
 MerkleProof memory proof,
 uint256 index,
 bytes32 leafHash,
 string memory prefix
) internal pure returns (bytes32 h) {
 h = leafHash;
 for (uint256 layer = 0; layer < proof.counterparts.length; layer++) {
 if (index & 1 == 0) {
 h = keccak256(abi.encodePacked(prefix, h, proof.counterparts[layer]
 } else {
 h = keccak256(abi.encodePacked(prefix, proof.counterparts[layer], h
 }
 index >>= 1;
 }
}

While computeRootUnsafe is always called with hashed data for the leafHash

argument, one can argue, that especially for inputs with limited entropy (e.g. the
combination of Instructions and their arguments) all potential pre-images can
be pre-computed.

code/contracts/src/state/MerkleProof.sol:L27-L33

function computeRootFromInstruction(
 MerkleProof memory proof,
 uint256 index,
 Instruction memory inst
) internal pure returns (bytes32) {
 return computeRootUnsafe(proof, index, Instructions.hash(inst), "Instructio
}

We’d like to bring attention to this property of the system as it is unclear if one
can utilize that information to cause a security-relevant impact on the system. It
should be discussed, whether it would make sense to enforce that Merkle proofs
always require at least one intermediary proof (require(counterparts.length > 0)) if -
for example - the Merkle root is guaranteed to always encode > 1 elements.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 33/57

5.15 Cast to enum type is implicitly bounds-checked

Description

Casting an integer to an enum will revert if the value is out of bounds. Hence,
additional bounds checks are unnecessary.

Examples

directly cast statusU8 to MachineStatus will perform a boundary check

code/contracts/src/state/Machine.sol:L12-L18

enum MachineStatus {
 RUNNING,
 FINISHED,
 ERRORED,
 TOO_FAR
}

code/contracts/src/state/Deserialize.sol:L261-L273

uint8 statusU8;
(statusU8, offset) = u8(proof, offset);
if (statusU8 == 0) {
 status = MachineStatus.RUNNING;
} else if (statusU8 == 1) {
 status = MachineStatus.FINISHED;
} else if (statusU8 == 2) {
 status = MachineStatus.ERRORED;
} else if (statusU8 == 3) {
 status = MachineStatus.TOO_FAR;
} else {
 revert("UNKNOWN_MACH_STATUS");
}

unnecessary check for maxValueType as ValueType(typeInt) will revert if it is out
of bounds

code/contracts/src/state/Deserialize.sol:L100-L103

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 34/57

require(typeInt <= uint8(ValueLib.maxValueType()), "BAD_VALUE_TYPE");
uint256 contents;
(contents, offset) = u256(proof, offset);
val = Value({valueType: ValueType(typeInt), contents: contents});

5.16 RollupAdminLogic - avoid allowing ineffective calls for
config changes

Description

Calling the RollupAdminLogic.setValidator() function without providing validators
does not affect the system. However, it still emits an event that might trigger off-
chain components to act. If such a call is performed in error - e.g., because the
off-chain transaction encoding library messed up and no function argument call
data was emitted, it might go undetected with the transaction not failing but
succeeding instead.

Examples

code/contracts/src/rollup/RollupAdminLogic.sol:L147-L154

function setValidator(address[] calldata _validator, bool[] calldata _val) exte
 require(_validator.length == _val.length, "WRONG_LENGTH");

 for (uint256 i = 0; i < _validator.length; i++) {
 isValidator[_validator[i]] = _val[i];
 }
 emit OwnerFunctionCalled(6);
}

code/contracts/src/rollup/RollupAdminLogic.sol:L258-L273

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 35/57

function forceResolveChallenge(address[] calldata stakerA, address[] calldata s
 external
 override
 whenPaused
{
 require(stakerA.length == stakerB.length, "WRONG_LENGTH");
 for (uint256 i = 0; i < stakerA.length; i++) {
 uint64 chall = inChallenge(stakerA[i], stakerB[i]);

 require(chall != NO_CHAL_INDEX, "NOT_IN_CHALL");
 clearChallenge(stakerA[i]);
 clearChallenge(stakerB[i]);
 challengeManager.clearChallenge(chall);
 }
 emit OwnerFunctionCalled(21);
}

Recommendation

Revert if the method is called with no calldata to surface that this method call
did not lead to any state change and was likely undesired or in error. Add
&& validator.length >0 to the input validation requirement.

5.17 GasRefundEnabled - reentrancy may theoretically allow
to refund more gas than was spent

Description

The refundsGas* modi�iers should only be used with methods that are reentrancy
protected, or else an attacker might be able to reenter and potentially drain the
gasRefunder contract of additional funds.

Note that there is no GasRefunder.sol in the target codebase, but we have
identi�ied a deployment on Rinkeby. The GasRefunder there implements a check
that the refund is only applied to the �irst transaction in a block which should be
su�icient to mitigate the attack on the gasRefunder paying out too much.

Examples

code/contracts/src/libraries/IGasRefunder.sol:L15-L34

https://rinkeby.etherscan.io/address/0xbbea02117225248de9ca68e5400794bf3f7f6a58#code

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 36/57

abstract contract GasRefundEnabled {
 modifier refundsGasWithCalldata(IGasRefunder gasRefunder, address payable s
 uint256 startGasLeft = gasleft();
 _;
 if (address(gasRefunder) != address(0)) {
 uint256 calldataSize;
 assembly {
 calldataSize := calldatasize()
 }
 gasRefunder.onGasSpent(spender, startGasLeft - gasleft(), calldataS
 }
 }

 modifier refundsGasNoCalldata(IGasRefunder gasRefunder, address payable spe
 uint256 startGasLeft = gasleft();
 _;
 if (address(gasRefunder) != address(0)) {
 gasRefunder.onGasSpent(spender, startGasLeft - gasleft(), 0);
 }
 }

Recommendation

If the gas refunding functionality is not used anymore, it should be removed
from the code base. Alternatively, tests and procedures should be implemented
to avoid using the modi�ier in a context that is not protected against reentrancy
attacks.

5.18 Unused constants

Description

The following constants are not referenced anywhere in the codebase. Note that
if they are to be used, we suggest using an enum instead
(https://github.com/ConsenSysDiligence/arbitrum-nitro-audit-2022-04/issues/2).

Examples

code/contracts/src/rollup/RollupEventBridge.sol:L15-L19

https://github.com/ConsenSysDiligence/arbitrum-nitro-audit-2022-04/issues/2)

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 37/57

contract RollupEventBridge is IMessageProvider, DelegateCallAware {
 uint8 internal constant CREATE_NODE_EVENT = 0;
 uint8 internal constant CONFIRM_NODE_EVENT = 1;
 uint8 internal constant REJECT_NODE_EVENT = 2;
 uint8 internal constant STAKE_CREATED_EVENT = 3;

Recommendation

Remove unused constants.

5.19 Contract file system layout, source-unit structure,
naming

Description

The project layout, source-unit structure, and naming conventions diverge from
best practices in smart contract development.

Recommendations

We recommend the following actions to clean up the code base and make it
more maintainable:

Developers should keep contract interface declarations separately from
contract implementations, e.g., in an interfaces subfolder. A similar
approach should be taken for abstract contracts.

If a contract/interface already exists, no sub-interfaces should be derived
from it.

Each source unit should only contain a single contract, e.g.,
RollupUserLogic.sol .

Instead of undescriptive integers, Enums should be used:

code/contracts/src/rollup/RollupEventBridge.sol:L16-L19

uint8 internal constant CREATE_NODE_EVENT = 0;
uint8 internal constant CONFIRM_NODE_EVENT = 1;
uint8 internal constant REJECT_NODE_EVENT = 2;
uint8 internal constant STAKE_CREATED_EVENT = 3;

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 38/57

code/contracts/src/rollup/RollupAdminLogic.sol:L153

emit OwnerFunctionCalled(6);

code/contracts/src/rollup/RollupAdminLogic.sol:L163

emit OwnerFunctionCalled(7);

Consider grouping public interfaces and internal/private interfaces
together. E.g., public interfaces �irst, private/internal afterward.

The contract should de�ine modi�iers at the top. They should not mix with
public/private functions:

code/contracts/src/challenge/ChallengeManager.sol:L39-L56

function challengeInfo(uint64 challengeIndex)
 external
 view
 override
 returns (ChallengeLib.Challenge memory)
{
 return challenges[challengeIndex];
}

modifier takeTurn(
 uint64 challengeIndex,
 ChallengeLib.SegmentSelection calldata selection,
 ChallengeModeRequirement expectedMode
) {
 ChallengeLib.Challenge storage challenge = challenges[challengeIndex];
 require(msg.sender == currentResponder(challengeIndex), "CHAL_SENDER");
 require(!isTimedOut(challengeIndex), "CHAL_DEADLINE");

Consider distinguishing non-public methods from public interfaces visually
by pre�ixing non-public methods with an underscore. For example, both,
_deliverMessage and deliverToBridge are internal methods but one is pre�ixed

with an underscore while the other is not.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 39/57

code/contracts/src/bridge/Inbox.sol:L394-L413

function _deliverMessage(
 uint8 _kind,
 address _sender,
 bytes memory _messageData
) internal returns (uint256) {
 if (_messageData.length > MAX_DATA_SIZE)
 revert DataTooLarge(_messageData.length, MAX_DATA_SIZE);
 uint256 msgNum = deliverToBridge(_kind, _sender, keccak256(_messageData));
 emit InboxMessageDelivered(msgNum, _messageData);
 return msgNum;
}

function deliverToBridge(
 uint8 kind,
 address sender,
 bytes32 messageDataHash
) internal returns (uint256) {
 return bridge.enqueueDelayedMessage{value: msg.value}(kind, sender, message
}

5.20 Missing NatSpec

Description

Not all external functions have NatSpec annotations. To quote the Solidity
documentation: “It is recommended that Solidity contracts are fully annotated
using NatSpec for all public interfaces (everything in the ABI).”

Recommendation

We strongly recommend adding NatSpec annotations to every contract and
every public or external function. Furthermore, critical internal and private
functions should be documented with NatSpec to increase maintainability and
reduce the potential for future developer errors. NatSpec documentation should
primarily be enforced in the sensitive and complex components, such as proof-
and challenge-related smart contracts.

https://docs.soliditylang.org/en/v0.8.13/style-guide.html#natspec

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 40/57

6 Other Code
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around
best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
�ixed.

6.1 Validator - unsafe default file/folder permissions can lead
to racy privilege escalation via shell-command injection Critical

Description

validator/block-validator::writeToFile creates a temporary shell script performing
block validation. The temporary script is stored in a sub-directory of
machConf.RootPath . This root folder is relative to the pwd and not necessarily within

the ACL-protected location of the user’s home directory.

code/validator/nitro_machine.go:L38-L42

var DefaultNitroMachineConfig = NitroMachineConfig{
 RootPath: "./target/machines/",
 WavmBinaryPath: "machine.wavm.br",
 UntilHostIoStatePath: "until-host-io-state.bin",

BlockValidator::validate calls BlockValidator::writeToFile which creates the directory
structure with permissions 0777 (-rwxrwxrwx). Note that this grants anyone read,
write, and execute permissions.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 41/57

code/validator/block_validator.go:L262-L268

func (v *BlockValidator) writeToFile(validationEntry *validationEntry, moduleRo
 machConf := v.MachineLoader.GetConfig()
 outDirPath := filepath.Join(machConf.RootPath, v.config.OutputPath, lau
 err := os.MkdirAll(outDirPath, 0777)
 if err != nil {
 return err
 }

The validator then creates a new �ile in the newly created folder using os.Create ,
which creates �iles with permission 0666 (-rw-rw-rw-) in the folder. Note that this
grants all users read, write access to that �ile. Note that all permissions are
considered to be before system-wide umask settings.

code/validator/block_validator.go:L270-L273

cmdFile, err := os.Create(filepath.Join(outDirPath, "run-prover.sh"))
if err != nil {
 return err
}

An unprivileged local user may exploit these permissive defaults by monitoring
the folder for newly created shell scripts, injecting their shell commands, and
then waiting for the privileged user to execute it. This may allow an unprivileged
user to execute shell commands as the validator user.

Finally, the script is explicitly set to 0777 (-rwxrwxrwx).

code/validator/block_validator.go:L354-L357

err = cmdFile.Chmod(0777)
if err != nil {
 return err
}

Recommendation

https://pkg.go.dev/os#Create

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 42/57

If there is no reason for others/group members to access or modify the shell
script, it is highly recommended to restrict the permissions to only allow the
owner to rwx the �ile (0700) . Files not to be executed should be set to chmod 0600

. Default folder permissions should be set to chmod 0600 .

Avoid creating a shell script in the �irst place, as this may always be subject to
time-of-check vs. time-of-use-related issues. It is generally less reliable than
running the prover directly.

6.2 Arbnode - OOB read panic in
parseSequencerMessage() Major

Description

A specially crafted message may lead to an OOB slice/array access in Arbnode’s
parseSequencerMessage() , potentially causing all nodes processing the message to

shut down in panic.

parseSequencerMessage() parses data obtained from an event to
SequencerInbox.sol::addSequencerL2Batch() . There are no input validation checks on

the data emitted from that call. However, the call is access-restricted with
isBatchPoster[msg.sender] (we found a reference that the sequencer might be a

batch poster) and rollup (RollupAdminLogic). This leads to the assumption that -
with the current system - data can only be posted by trusted entities, which led
to the current severity rating.

Examples

Suppose the payload is hinting zeroHeavy encoded data, but io.ReadAll fails to
decode the presumably zeroHeavy encoded blob. In that case, a warning
message is emitted, and payload is set to a zero-length slice. This zero-length
slice is then attempted to be accessed at index 1, which leads to an out-of-
bounds access panic with the go runtime.

code/arbstate/inbox.go:L86-L96

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 43/57

if len(payload) > 0 {
 if IsZeroheavyEncodedHeaderByte(data[40]) {
 pl, err := io.ReadAll(io.LimitReader(zeroheavy.NewZeroheavyDeco
 if err != nil {
 log.Warn("error reading from zeroheavy decoder", err.Er
 pl = []byte{}
 }
 payload = pl
 }
 decompressed, err := arbcompress.Decompress(payload[1:], maxDecompresse
 if err == nil {

Recommendation

Abort handling of the payload if reading the payload fails.

6.3 seq_coordinator - log.Crit(...) terminates without
executing deferred functions or returning from function calls

Medium

Description

Multiple locations in seq_coordinator.go emit critical log messages and return a
value on error. However, code after log.crit(...) will not be executed as the
method calls os.Exit(1) internally terminating the process (see go-
ethereum/log) before returning a value.

Returning a value after calling log.Crit(...) may indicate that the terminating
side-effect was not intended.

Examples

log.Crit(...) terminates before returning a value

code/arbnode/seq_coordinator.go:L601-L604

if c.sequencer == nil {
 log.Crit("myurl main sequencer, but no sequencer exists")
 return c.noRedisError()
}

https://github.com/ethereum/go-ethereum/blob/9a529d64d14f8ebf677e69cf1b5de836ca215049/log/logger.go#L183-L186

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 44/57

code/arbnode/seq_coordinator.go:L534-L537

if err != nil {
 log.Crit("cannot read message count", "err", err)
 return c.config.UpdateInterval
}

code/arbnode/seq_coordinator.go:L502-L505

if err != nil {
 log.Crit("coordinator cannot read message count", "err", err)
 return c.config.UpdateInterval
}

Recommendation

Decide whether to terminate and print a log message, bubble up the error, or
return sane defaults if the condition is recoverable. Consider adding inline
comments surfacing that log.Crit(...) terminates the process, and this behavior
is intentional. Avoid using log.Crit() in general and terminate the process in a
controlled way, explicitly, or avoid calling log.Crit(...) (or similar terminating
methods) with defer statements, especially if external resources are being
locked.

6.4 seq_coordinator - pot. resource exhaustion DoS due to
unset http.server timeouts Medium

Description

The sequence coordinator can be con�igured to spawn a health check server.
The server module used is http.Server{} , and no read/write timeout is set. Not
setting timeouts can become problematic as malicious users may connect to
the service, deliberately keeping the connection open and consuming server
resources (sockets/�ile-descriptors). Resource exhaustion may eventually lead to
a denial-of-service condition of the health check service or unspeci�ied other

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 45/57

issues on the affected system (because �ile/socket open/close operations
suddenly fail).

The following article provides more insights into why timeouts must be set: the-
complete-guide-to-golang-net-http-timeouts.

Examples

&http.Server{} defaults to timeouts being disabled if Read/Write/Idle-timout
are not set

code/arbnode/seq_coordinator.go:L666-L684

func (c *SeqCoordinator) launchHealthcheckServer(ctx context.Context) {
 server := &http.Server{
 Addr: c.config.ChosenHealthcheckAddr,
 Handler: seqCoordinatorChosenHealthcheck{c},
 }

 go func() {
 <-ctx.Done()
 err := server.Shutdown(ctx)
 if err != nil && !errors.Is(err, context.Canceled) && !errors.I
 log.Warn("error shutting down coordinator chosen health
 }
 }()

 err := server.ListenAndServe()
 if err != nil && !errors.Is(err, http.ErrServerClosed) {
 log.Warn("error serving coordinator chosen healthcheck server",
 }
}

Recommendation

Set reasonable read/write timeouts.

srv := &http.Server{
 ReadTimeout: 5 * time.Second,
 WriteTimeout: 10 * time.Second,
}

https://blog.cloudflare.com/the-complete-guide-to-golang-net-http-timeouts/

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 46/57

6.5 dasrpcserver - unauthenticated read/write from localhost
Medium

Description

The daserver command spawns a gRPC daemon that listens on
tcp://localhost:<port> . The transport is unauthenticated, and there is no user

access control for read/write operations.

listens on localhost:<port> without transport security

On a multi-user system, there is no way for a client consuming the API to verify
the authenticity of the gRPC server. Other - potentially less privileged - users
may be able to start a service on the expected port (depending on port range
and system privileges) before the actual services does, mimicking a valid but
malicious dasrpcserver . The attacker is in complete control of the communication
channel. We, therefore, suggest enabling transport security and - at least -
requiring the service to authenticate to potential clients (e.g., TLS server auth;
con�iguring a gRPC TLS server certi�icate).

code/das/dasrpc/dasRpcServer.go:L21-L23

func StartDASRPCServer(ctx context.Context, portNum uint64, localDAS das.DataAv
 grpcServer := grpc.NewServer()
 listener, err := net.Listen("tcp", fmt.Sprintf("localhost:%d", portNum)

exposes read/write API endpoints without access control

The gRPC service does not provide any means for user access control. Any
gRPC client that can connect to localhost:<port> - including unprivileged local
users - may read/write to the database.

code/das/dasrpc/dasRpcServer.go:L45-L64

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 47/57

func (serv *DASRPCServer) Store(ctx context.Context, req *StoreRequest) (*Store
 cert, err := serv.localDAS.Store(ctx, req.Message)
 if err != nil {
 return nil, err
 }
 return &StoreResponse{
 DataHash: cert.DataHash[:],
 Timeout: cert.Timeout,
 SignersMask: cert.SignersMask,
 Sig: blsSignatures.SignatureToBytes(cert.Sig),
 }, nil
}

func (serv *DASRPCServer) Retrieve(ctx context.Context, req *RetrieveRequest) (
 result, err := serv.localDAS.Retrieve(ctx, req.Cert)
 if err != nil {
 return nil, err
 }
 return &RetrieveResponse{Result: result}, nil

Recommendation

Enable transport security for gRPC. Con�igure a TLS server certi�icate and
allow clients to verify the server’s authenticity.

Require client authentication (e.g., a simple pre-shared secret used with a
challenge-response mechanism), or else anyone on the local machine with
access to localhost:<port> may be able to read/write data.

6.6 broadcaster - OnDoBroadcast never returns an error
condition Minor

Description

SequenceNumberCatchupBuffer.OnDoBroadcast declares to return an error, however, all
return statements (even for error conditions) hardcode the error return value to
nil and in one case the broadcaster terminates when handling an unknown

message type (log.crit()).

code/broadcaster/broadcaster.go:L86-L97

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 48/57

func (b *SequenceNumberCatchupBuffer) OnDoBroadcast(bmi interface{}) error {
 broadcastMessage, ok := bmi.(BroadcastMessage)
 if !ok {
 log.Crit("Requested to broadcast messasge of unknown type")
 }
 defer func() { atomic.StoreInt32(&b.messageCount, int32(len(b.messages)

 if confirmMsg := broadcastMessage.ConfirmedSequenceNumberMessage; confi
 if len(b.messages) == 0 {
 return nil
 }

code/broadcaster/broadcaster.go:L111-L117

if b.messages[confirmedIndex].SequenceNumber != confirmMsg.SequenceNumber {
 // Log instead of returning error here so that the message will be sent
 // relays to also cause them to be cleared.
 log.Error("Invariant violation: Non-sequential messages stored in Seque
 b.messages = nil
 return nil
}

used by: wsbroadcastsever

code/wsbroadcastserver/clientmanager.go:L136-L139

func (cm *ClientManager) doBroadcast(bm interface{}) error {
 if err := cm.catchupBuffer.OnDoBroadcast(bm); err != nil {
 return err
 }

Recommendation

If errors are not returned to the caller and are always hardcoded to nil there is
no reason to return an error. Consider returning an indicator of errors and allow
the caller to handle them.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 49/57

6.7 precompile - failing to pack return values causes node to
panic Minor

Description

Panics are generally problematic for systems that require nodes to provide
reliable services. An implicit or explicit panic, log.crit() , or log.fatal() may shut
down the node and thus weaken the security of the overall system. In
production systems, it is recommended to avoid causing panic conditions in
critical services or execution �lows that may be exposed to external and
potentially untrusted entities.

Examples

code/precompiles/precompile.go:L678-L683

encoded, err := method.template.Outputs.PackValues(result)
if err != nil {
 // in production we'll just revert, but for now this
 // will catch implementation errors
 log.Fatal("Could not encode precompile result ", err)
}

Recommendation

This speci�ic example is less likely and may be less problematic as the panic
should only happen if there is an implementation issue with the precompile.
However, as the inline-comment states, it is recommended to implement a
global switch that indicates whether the application is running in production or
debug mode. Panics and fatal logs should only be raised in the latter manner to
reduce the risk of production nodes terminating in case such an event occurs.

6.8 Handle recoverable exceptions in off-chain applications

Description

In the case of an attacker managing to force a Go runtime error or exception in
an off-chain application, the component (e.g. Arbitrum Node) will not
automatically restart itself and resume its duties to protect the protocol. The

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 50/57

issue applies to off-chain community applications such as validators and
privileged ones like the sequencer.

Node liveness is essential, and failure to prove liveness during challenges may
be punished or put the network at risk. The worst case might be someone
adding information to a smart contract that causes a Go panic in the client
implementation (also see https://github.com/ConsenSysDiligence/arbitrum-
nitro-audit-2022-04/issues/23). This attack can destabilize the network,
providing opportunities for malicious actors to pro�it.

Therefore, segmenting the application into recoverable and non-recoverable
zones is highly recommended. For example, a recoverable exception is parseInt

trying to parse user-tainted data and failing to do so. The application could
continue in such a case by skipping this entry. The application should print the
stack trace, log the event, and make the user aware. Another example would be
a panic that may be triggered by a malicious client accessing the node RPC
service. In production builds, any panic thrown in non-vital services like an
informational RPC service should allow the service to recover. In any case, the
application must continue providing its services to support the network’s
security.

For example, an application can achieve recoverability in Go by catching panic
conditions using the Defer, Panic, Recover pattern.

6.9 Use of cgo C native library interface for interop

Description

Both Golang and Rust are memory-safe programming languages - at least at
compile time. The Arbitrator prover is written and compiled in Rust and exposed
as a C native library. The Arbitrum node is written in Golang and links the Rust
library using the cgo native library interface, a low-level interface that bypasses
the compilers' memory safety features. For example, data and memory pointers
managed by one language must be passed to the native module in an unsafe
fashion while at the same time ensuring that garbage collection does not free
presumably unreferenced memory pointers that are still in use by a component.
This scenario happens, e.g., when Go unmanaged data is passed into the Rust-
compiled library. Furthermore, types must be converted to low-level C native

https://github.com/ConsenSysDiligence/arbitrum-nitro-audit-2022-04/issues/23)
https://blog.golang.org/defer-panic-and-recover
https://go.dev/
https://www.rust-lang.org/

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 51/57

types, and the originating objects' location (stack/heap) may suddenly become
important (memory might get accidentally freed). Note that the native library is
not isolated from the calling Go code. A panic in the prover code may lead to
the Arbitrum node terminating in error
(https://github.com/ConsenSysDiligence/arbitrum-nitro-audit-2022-
04/issues/25).

Examples

Assuming manual control of garbage collection

Runtime magic ensures that m is not garbage collected while it is being
accessed from the Rust component, leading to inconsistent use:

AddPreimages does not mark m as currently reachable

code/validator/machine.go:L265-L275

func (m *ArbitratorMachine) AddPreimages(preimages map[common.Hash][]byte) erro
 for _, val := range preimages {
 cbyte := CreateCByteArray(val)
 status := C.arbitrator_add_preimage(m.ptr, cbyte)
 DestroyCByteArray(cbyte)
 if status != 0 {
 return errors.New("failed to add sequencer inbox messag
 }
 }
 return nil
}

AddDelayedInboxMessage marks m as currently reachable

code/validator/machine.go:L248-L253

func (m *ArbitratorMachine) AddDelayedInboxMessage(index uint64, data []byte) e
 defer runtime.KeepAlive(m)

 if m.frozen {
 return errors.New("machine frozen")
 }

https://github.com/ConsenSysDiligence/arbitrum-nitro-audit-2022-04/issues/25)

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 52/57

Inconsistent check for frozen

addPreimages is missing a check for m.frozen . The method should not allow adding
preimages if the machine is frozen.

code/validator/machine.go:L265-L275

func (m *ArbitratorMachine) AddPreimages(preimages map[common.Hash][]byte) erro
 for _, val := range preimages {
 cbyte := CreateCByteArray(val)
 status := C.arbitrator_add_preimage(m.ptr, cbyte)
 DestroyCByteArray(cbyte)
 if status != 0 {
 return errors.New("failed to add sequencer inbox messag
 }
 }
 return nil
}

Low-level manual memory management and reference tracking

code/validator/machine.go:L203-L206

cPath := C.CString(path)
status := C.arbitrator_serialize_state(m.ptr, cPath)
C.free(unsafe.Pointer(cPath))

High complexity and down-cast to unsafe/unmanaged types

Using the C native interface to glue code compiled with different compilers
together introduces complexity, bypasses language safety features when
passing data from one to the other component and, therefore, may increase the
risk of introducing errors that may have severe consequences for the security of
the system. For example, due to Go being a garbage collected language, failing
to prevent the garbage collector form freeing manually managed memory
allocations that are still in use may lead to problems that manifest unpredictably
during runtime.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 53/57

To illustrate the complexity introduced by combining the two different
languages within one application we are looking at the Go method
createZeroStepMachineInternal() . The method interfaces with code compiled in Rust

to load a wavm binary, initializing and returning a pointer to machine object.
This will result in the following sequence of events:

�. createZeroStepMachineInternal loads the wavm binary via
arbitrator_load_wavm_binary , a method that is exposed in the linked Rust prover

library.

�. The method requires the path to the wavm binary to be passed as the �irst
argument. Since the two languages communicate via the C native library
interface, the argument must be provided as a manually managed CString .
Therefore, the Go String variable binPath is duplicated to an unmanaged
CString - basically a down-cast to an unmanaged low-level string. This string

must be manually freed when it is not being used anymore.

�. In the Rust code, arbitrator_load_wavm_binary retrieves the CString and
converts it to a Rust string object and then proceeds creating the wavm
machine.

�. Eventually, a pointer to the machine object is manually stored in the Heap
via Box::into_raw(Box::new(mach)) and a pointer to the heap structure is
returned to the calling Go code. Note that the box_rawptr heap pointer is
manually managed and must be manually freed.

�. When the Go struct is destroyed, the Go �inalizer routine calls the Rust
library method arbitrator_free_machine(baseMachine) to �inally free the heap
allocation.

code/validator/nitro_machine.go:L84-L100

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 54/57

func (s *loaderMachineStatus) createZeroStepMachineInternal(config NitroMachine
 defer s.signalReady()
 binPath := filepath.Join(config.getMachinePath(moduleRoot), config.Wavm
 cBinPath := C.CString(binPath)
 defer C.free(unsafe.Pointer(cBinPath))
 log.Info("creating nitro machine", "binpath", binPath)
 baseMachine := C.arbitrator_load_wavm_binary(cBinPath)
 if baseMachine == nil {
 s.err = errors.New("failed to load base machine")
 return
 }
 nitroMachine := machineFromPointer(baseMachine)
 machineModuleRoot := nitroMachine.GetModuleRoot()
 if machineModuleRoot != realModuleRoot {
 s.err = fmt.Errorf("attempting to load module root %v got machi
 return
 }

code/arbitrator/prover/src/lib.rs:L130-L139

pub unsafe extern "C" fn arbitrator_load_wavm_binary(binary_path: *const c_char
 let binary_path = cstr_to_string(binary_path);
 let binary_path = Path::new(&binary_path);
 match Machine::new_from_wavm(binary_path) {
 Ok(mach) => Box::into_raw(Box::new(mach)),
 Err(err) => {
 eprintln!("Error loading binary: {}", err);
 std::ptr::null_mut()
 }
 }

code/arbitrator/prover/src/lib.rs:L142-L144

unsafe fn cstr_to_string(c_str: *const c_char) -> String {
 CStr::from_ptr(c_str).to_string_lossy().into_owned()
}

Recommendation

Using the C native library interface with all the caveats introduces risk and
complexity to a system that manages signi�icant value. As such, risk and

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 55/57

complexity should always be reduced to the absolute minimum, low-level
interaction should be avoided, and the application should be designed in a way
that it can recover from recoverable exceptions (critical/non-critical sections,
use of recover() for Go panics, ensure the rust lib does not panic-terminate the
Go host for potentially user reachable panics, avoid Go unsafe modules)

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more
clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via
ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or
team, and the Reports do not guarantee the security of any particular project.
This Report does not consider, and should not be interpreted as considering or
having any bearing on, the potential economics of a token, token sale or any
other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.
No Report provides any warranty or representation to any Third-Party in any
respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the
purpose of making any decisions to buy or sell any token, product, service or
other asset. Speci�ically, for the avoidance of doubt, this Report does not
constitute investment advice, is not intended to be relied upon as investment
advice, is not an endorsement of this project or team, and it is not a guarantee
as to the absolute security of the project. CD owes no duty to any Third-Party by
virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within
the scope of our review within this report. Any Solidity code itself presents
unique and unquanti�iable risks as the Solidity language itself remains under
development and is subject to unknown risks and �laws. The review does not

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 56/57
Request a Security Review Today

extend to the compiler layer, or any other areas beyond speci�ied code that
could present security risks. Cryptographic tokens are emergent technologies
and carry with them high levels of technical risk and uncertainty. In some
instances, we may perform penetration testing or infrastructure assessments
depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices
in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext
or other computer links, gain access to web sites operated by persons other
than ConsenSys and CD. Such hyperlinks are provided for your reference and
convenience only, and are the exclusive responsibility of such web sites' owners.
You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability
to you or any other person or entity for the use of third party Web sites. Except
as described below, a hyperlink from this web Site to another web site does not
imply or mean that ConsenSys and CD endorses the content on that Web site or
the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites
to which you link from the Reports. ConsenSys and CD assumes no
responsibility for the use of third party software on the Web Site and shall have
no liability whatsoever to any person or entity for the accuracy or completeness
of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of
the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

11/22/22, 2:04 PM Arbitrum Nitro Smart Contracts | ConsenSys Diligence

https://consensys.net/diligence/audits/private/8ix9xwnm1ark7c/ 57/57

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

A U D I T S

F U Z Z I N G

S C R I B B L E

B L O G

T O O L S

R E S E A R C H

A B O U T

C O N TA C T

C A R E E R S

P R I VA C Y
P O L I C Y

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings,
tools, and the world of blockchain
security.

CONTACT US

https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/
https://consensys.net/diligence/contact/

