
Arbitrum BoLD
Findings & Analysis Report

2024-06-17

Table of contents
Overview

About C4

Wardens

Summary

Scope

Severity Criteria

High Risk Findings (2)

[H-01] Adversary can make honest parties unable to retrieve their

assertion stakes if the required amount is decreased

[H-02] Edge from dishonest challenge edge tree can inherit timer

from honest tree allowing confirmation of incorrect assertion

Medium Risk Findings (2)

[M-01] Inconsistent sequencer unexpected delay in DelayBuffer

may harm users calling forceInclusion()

[M-02] BOLDUpgradeAction.sol will fail to upgrade contracts due

to error in the perform function

Low Risk and Non-Critical Issues

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 1/37

https://code4rena.com/

L-01 Risk of Confirming Assertion Prematurely if

totalTimeUnrivaled Equals confirmationThresholdBlock

L-02 mandatoryBisectionHeight() not return expected results

L-03 Misleading comment in setOutbox() function

L-04 if (ard.assertionHash != args.claimId) { Potentially

Redundant Check Between assertionHash and claimId in

layerZeroTypeSpecificChecks() function

L-05 Incorrect Comment Describing Execution State Check in

layerZeroTypeSpecificChecks() Function

L-06 Consequences of Missing Validation in critical

setMinimumAssertionPeriod and setBaseStake Functions

L-07 Inefficient Array Resizing in append() Function

L-08 block.number >= assertion.createdAtBlock +

prevConfig.confirmPeriodBlocks not implemented as per docs

L-09 reduceStakeTo Function Allows Call Even with Zero Staked

Amount

N-01 newStakeOnNewAssertion function reverts all calls when

contract paused

Disclosures

Code4rena (C4) is an open organization consisting of security researchers,

auditors, developers, and individuals with domain expertise in smart contracts.

A C4 audit is an event in which community participants, referred to as

Wardens, review, audit, or analyze smart contract logic in exchange for a

bounty provided by sponsoring projects.

Overview

About C4

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 2/37

During the audit outlined in this document, C4 conducted an analysis of the

Arbitrum BoLD smart contract system written in Solidity. The audit took place

between May 10—May 27 2024.

31 Wardens contributed reports to Arbitrum BoLD:

�. xuwinnie

�. Ch_301

�. 0x73696d616f

�. SpicyMeatball

�. Sathish9098

�. Kow

�. Emmanuel

�. ladboy233

�. Rhaydden

��. dontonka

��. josephdara

��. bronze_pickaxe

��. K42

��. fyamf

��. slvDev

��. hihen

��. ZanyBonzy

��. forgebyola

��. Dup1337 (ChaseTheLight, sorrynotsorry, and deliriusz)

Wardens

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 3/37

https://code4rena.com/@xuwinnie
https://code4rena.com/@Ch_301
https://code4rena.com/@0x73696d616f
https://code4rena.com/@SpicyMeatball
https://code4rena.com/@Sathish9098
https://code4rena.com/@Kow
https://code4rena.com/@Emmanuel
https://code4rena.com/@ladboy233
https://code4rena.com/@Rhaydden
https://code4rena.com/@dontonka
https://code4rena.com/@josephdara
https://code4rena.com/@bronze_pickaxe
https://code4rena.com/@K42
https://code4rena.com/@fyamf
https://code4rena.com/@slvDev
https://code4rena.com/@hihen
https://code4rena.com/@ZanyBonzy
https://code4rena.com/@forgebyola
https://code4rena.com/@Dup1337
https://code4rena.com/@ChaseTheLight
https://code4rena.com/@sorrynotsorry
https://code4rena.com/@deliriusz

��. Takarez

��. twcctop

��. Audinarey

��. guhu95

��. zanderbyte

��. carlitox477

��. LessDupes (3docSec, sin1st3r__, and EV_om)

��. KupiaSec

This audit was judged by Picodes.

Final report assembled by liveactionllama.

The C4 analysis yielded an aggregated total of 4 unique vulnerabilities. Of

these vulnerabilities, 2 received a risk rating in the category of HIGH severity

and 2 received a risk rating in the category of MEDIUM severity.

Additionally, C4 analysis included 23 reports detailing issues with a risk rating

of LOW severity or non-critical.

All of the issues presented here are linked back to their original finding.

The code under review can be found within the C4 Arbitrum BoLD

repository, and is composed of 14 interfaces and 27 logic contracts written in

the Solidity programming language and includes 3,603 lines of Solidity code.

Summary

Scope

Severity Criteria

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 4/37

https://code4rena.com/@Takarez
https://code4rena.com/@twcctop
https://code4rena.com/@Audinarey
https://code4rena.com/@guhu95
https://code4rena.com/@zanderbyte
https://code4rena.com/@carlitox477
https://code4rena.com/@LessDupes
https://code4rena.com/@3docSec
https://code4rena.com/@sin1st3r__
https://code4rena.com/@EV_om
https://code4rena.com/@KupiaSec
https://code4rena.com/@Picodes
https://twitter.com/liveactionllama
https://github.com/code-423n4/2024-05-arbitrum-foundation
https://github.com/code-423n4/2024-05-arbitrum-foundation

C4 assesses the severity of disclosed vulnerabilities based on three primary

risk categories: high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas when

conducting assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

For more information regarding the severity criteria referenced throughout the

submission review process, please refer to the documentation provided on the

C4 website, specifically our section on Severity Categorization.

Submitted by xuwinnie, also found by Ch_301

When the required stake (to create a new assertions) is updated to a lower

amount, adversary can make the honest party unable to retrieve their

assertion stakes.

High Risk Findings (2)

[H-01] Adversary can make honest parties unable to
retrieve their assertion stakes if the required amount is
decreased

Impact

Proof of Concept

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 5/37

https://code4rena.com/
https://code4rena.com/
https://docs.code4rena.com/awarding/judging-criteria/severity-categorization
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/8
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/37
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/8
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/8
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/8

Suppose the initial stake amount is 1000 ETH, and till now no invalid

assertions have been made. (A, B, C, D, E are all valid and made by the same

validator). The rollup contract should hold 1000 ETH now.

Then, the admin update the required stake to 700 ETH, Alice made an invalid

assertion F. Since its parent D was created before the update, Alice will still

need to stake 1000 ETH, and the 1000 ETH will be sent to loserStakeEscrow.

(a) Alice creates F’s children, G. Now, only 700 ETH of stake is needed.

However, as the comment suggests, no refund will be made since G’s ancestor

could need more stake.

 A -- B -- C -- D(latest confirmed) -- E

 A -- B -- C -- D(latest confirmed) -- E
 \
 \ F(invalid)

 if (!getAssertionStorage(newAssertionHash).isFi

 // only 1 of the children can be confirmed
 // so we send the other children's stake to
 IERC20(stakeToken).safeTransfer(loserStakeE
 }

 A -- B -- C -- D(latest confirmed) -- E
 \

 \ F -- G

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 6/37

(b) To bypass the limit in (a), Alice calls her friend Bob to make the assertion G

instead , Bob will only need to stake 700 ETH now. The rollup contract

currently holds 1700 ETH. Then, Alice can withdraw her stake since she is no

longer active. (her last staked assertion have a child)

Now the rollup contract holds 700 ETH, which means it is insolvent. The

honest validator cannot withdraw her original stake. (700 < 1000)

Ensure the following

�. A staker is considered inactive only if her last staked assertion is

confirmed.

 // requiredStake is user supplied, will be veri
 // the prev's requiredStake is used to make sur
 // the staker may have more than enough stake,
 // we cannot do a refund here because the stake
 // excess stake can be removed by calling reduc
 require(amountStaked(msg.sender) >= assertion.b

 function requireInactiveStaker(address stakerAddres
 require(isStaked(stakerAddress), "NOT_STAKED");
 // A staker is inactive if
 // a) their last staked assertion is the latest
 // b) their last staked assertion have a child
 bytes32 lastestAssertion = latestStakedAssertio
 bool isLatestConfirmed = lastestAssertion == la
 bool haveChild = getAssertionStorage(lastestAss
 require(isLatestConfirmed || haveChild, "STAKE_
 }

Recommended Mitigation Steps

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 7/37

�. A staker can only stake on her last staked assertion’s descendants.

(otherwise Alice can switch to the correct branch and withdraw)

gzeoneth (Arbitrum) confirmed and commented:

Patched with https://github.com/OffchainLabs/bold/pull/655.

Submitted by Kow, also found by Emmanuel, xuwinnie, and SpicyMeatball

Timers can be inherited across different challenge trees and consequently

incorrect assertions can be confirmed.

The function RollupUserLogic::updateTimerCacheByClaim allows

inheritance of timers between different levels of a challenge. It performs some

validation on edge being inherited from in checkClaimIdLink (the claiming

edge).

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challen

geV2/libraries/EdgeChallengeManagerLib.sol#L689-L710

[H-02] Edge from dishonest challenge edge tree can
inherit timer from honest tree allowing confirmation of
incorrect assertion

Impact

Proof of Concept

 function checkClaimIdLink(EdgeStore storage store, byte
 private
 view
 {
 // the origin id of an edge should be the mutual id
 if (store.edges[edgeId].mutualId() != store.edges[c

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 8/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/8#issuecomment-2145263766
https://github.com/OffchainLabs/bold/pull/655
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/2
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/27
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/10
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/6
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L689-L710
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L689-L710
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L689-L710
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/2
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/2
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/2

As per the comments, the claiming edge must be exactly one level below (ie.

in the subchallenge directly a�er the inheriting edge) and its originId must

match the mutualId of the inheriting edge. For clarification, we note that the

inheriting edge must be a leaf edge in a challenge/subchallenge tree since the

root edges of subchallenges (the layer zero edges) have originId derived

from the mutualId of one of these leaf edges, and this originId is inherited

by all its children which result from bisection.

Note that rival edges share the same mutualId by definition and since there

isn’t any extra validation, if a specific edge is a valid inheriting edge, all rivals

will also be valid inheriting edges. This means rivals belonging to dishonest

challenge edge trees will also be able to inherit from the timer of edges in the

honest tree. Consequently, if an honest edge accumulates sufficient unrivalled

time for confirmation, a malicious actor can frontrun the confirmation of the

honest challenge tree to confirm the dishonest challenge, and in turn an

incorrect assertion.

It is sufficient for only one dishonest child edge to inherit a sufficient timer via

claim since the other will be unrivalled as challenges between two assertions

can only follow one unique bisection path in each challenge tree. The only way

to deny this would be to create another assertion that can be bisected to rival

 revert OriginIdMutualIdMismatch(store.edges[edg
 }
 // the claiming edge must be exactly one level belo
 if (nextEdgeLevel(store.edges[edgeId].level, numBig
 revert EdgeLevelInvalid(
 edgeId,
 claimingEdgeId,
 nextEdgeLevel(store.edges[edgeId].level, nu
 store.edges[claimingEdgeId].level
);
 }
 }

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 9/37

the other child to halt the timer accumulation, but this would require loss of

the assertion and challenge stake (since only one rival assertion and challenge

edge can be confirmed). The timer can then be propogated upwards by

children until we reach the root challenge edge to allow confirmation.

Even if confirmation of the dishonest root challenge edge is prevented by

admin action, confirmation of the layer zero edges of subchallenges would

ensure honest validators lose the stake submitted for creating a rival edge

(since only one rival edge can be confirmed) and the dishonest validator(s)

regain their stake.

Proof of Concept

Allow child edges (from bisection) to inherit the claimId of their parent and

check that the claimId of the claiming edge matches the edgeId of the

inheriting edge (this would require changes to isLayerZeroEdge).

godzillaba (Arbitrum) confirmed

gzeoneth (Arbitrum) commented:

Good catch.

Fixed in https://github.com/OffchainLabs/bold/pull/659.

Recommended Mitigation Steps

Medium Risk Findings (2)

[M-01] Inconsistent sequencer unexpected delay in
DelayBuffer may harm users calling forceInclusion()

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 10/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/2#issuecomment-2142831846
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/2#issuecomment-2142879476
https://github.com/OffchainLabs/bold/pull/659
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55

Submitted by 0x73696d616f

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/main/src/bridge/DelayBuffer.sol#L43

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/main/src/bridge/DelayBuffer.sol#L90-L98

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/main/src/bridge/SequencerInbox.sol#L287

Buffer unexpected delay due to sequencer outage is inconsistent.

When the sequencer is down, users may call

SequencerInbox::forceInclusion() to get their message added to the

inbox sequencerInboxAccs . However, there is an incosistency when the

sequencer has been down and there is more than 1 message, or even if just 1

message.

The DelayBuffer is used to dynamically adjust how much delay a user has to

wait to call SequencerInbox::forceInclusion() . The buffer increase

mechanism is not relevant for this issue.

The buffer decrease consists of subtracting the last time the buffer was

updated, self.prevSequencedBlockNumber , by the previous block number

of the last delay buffer update, self.prevBlockNumber . This is done this way

to ensure that the sequencer delay can not be double counted, as the delayed

inbox may have more than 1 delayed message.

However, the approach taken as a way of protecting the sequencer and not

depleting the buffer incorrectly as the drawback that it also means that the

buffer will not always be decreased.

Impact

Proof of Concept

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 11/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/src/bridge/DelayBuffer.sol#L43
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/src/bridge/DelayBuffer.sol#L43
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/src/bridge/DelayBuffer.sol#L90-L98
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/src/bridge/DelayBuffer.sol#L90-L98
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/src/bridge/SequencerInbox.sol#L287
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/src/bridge/SequencerInbox.sol#L287

For example, if the sequencer is working at a block number A, a message is

submited at block number A + 10 and another one at block number A + 110. If

the sequencer is down, the user has to wait, for example, delay blocks of 100

(or the delay buffer, depending on the smallest). If 200 blocks have passed

since A + 10 (the first message), both delayed messages may be force

included, at block number A + 210.

The discrepancy is that, depending on how the delayed messages are

included, the buffer delay will be reduced differently. If both messages are

removed at once, by calling SequencerInbox::forceInclusion() with the

id of the newest message, the buffer delay will not be decreased, as

self.prevBlockNumber is A, the same as

self.prevSequencedBlockNumber . This would harm users that want to force

included messages as the buffer would be bigger and they would have to wait

more time for their message to be force included.

If the oldest message is first force included, the buffer delay will not

decreased, as above, but self.prevSequencedBlockNumber will be updated

to A + 210 and self.prevBlockNumber to A + 10. Then, if the second

message is force included, self.prevSequencedBlockNumber -

self.prevBlockNumber == A + 210 - (A + 10) == 200 , which means that

the buffer would correctly decrease as the sequencer was offline (ignoring the

fact that there is a threshold, but the issue is the same as long as the delay is

bigger than the threshold).

As a proof of concept, add the following test to SequencerInbox.t.sol . It

shows that given 2 messages, the delay buffer is only decreased if the first

message is forcely included first and only a�er is the newest message

included. If the given delayedMessagesRead is the if of the second message,

without forcely including the first one first, the buffer will not decrease.

function test_POC_InconsistentBuffer_Decrease() public {
 BufferConfig memory configBufferable = BufferConfig({

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 12/37

https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/src/bridge/SequencerInbox.sol#L843-L845

 threshold: 600, //60 * 60 * 2 / 12
 max: 14400, //24 * 60 * 60 / 12 * 2
 replenishRateInBasis: 714
 });

 (SequencerInbox seqInbox, Bridge bridge) = deployRollup
 address delayedInboxSender = address(140);
 uint8 delayedInboxKind = 3;
 bytes32 messageDataHash = RAND.Bytes32();

 (uint64 bufferBlocks, ,,,,) = seqInbox.buffer();
 assertEq(bufferBlocks, 14400);

 vm.startPrank(dummyInbox);
 bridge.enqueueDelayedMessage(delayedInboxKind, delayedI
 vm.roll(block.number + 1100);
 bridge.enqueueDelayedMessage(delayedInboxKind, delayedI
 vm.stopPrank();

 vm.roll(block.number + 500);

 uint256 delayedMessagesRead = bridge.delayedMessageCoun

 // buffer is not decreased if the first and second mess
 seqInbox.forceInclusion(
 delayedMessagesRead,
 delayedInboxKind,
 [uint64(block.number - 500), uint64(block.times
 0,
 delayedInboxSender,
 messageDataHash
);
 (bufferBlocks, ,,,,) = seqInbox.buffer();
 assertEq(bufferBlocks, 14400);

 // buffer is only decreased if the first message is inc
 /*seqInbox.forceInclusion(
 delayedMessagesRead - 6,
 delayedInboxKind,
 [uint64(block.number - 1600), uint64(block.time

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 13/37

Vscode

Foundry

A mitigation must be carefully taken as not to introduce double accounting of

the buffer delay. One solution that would fix this issue is tracking the total

unexpected delay separately and making it equal to the block.number minus

the maximum between the previous sequenced block number and the oldest

delayed message that was not yet included. This way, by doing the maximum

with the last sequenced, we guarantee that no double accounting of delays

takes place. By doing the maximum with the oldest delayed message, we

guarantee that the delay is real and not that no message was submitted.

 0,
 delayedInboxSender,
 messageDataHash
);
 (bufferBlocks, ,,,,) = seqInbox.buffer();
 assertEq(bufferBlocks, 14400);

 seqInbox.forceInclusion(
 delayedMessagesRead,
 delayedInboxKind,
 [uint64(block.number - 500), uint64(block.times
 0,
 delayedInboxSender,
 messageDataHash
);
 (bufferBlocks, ,,,,) = seqInbox.buffer();
 assertEq(bufferBlocks, 13478);*/
}

Tools Used

Recommended Mitigation Steps

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 14/37

Note: the following discussion has been condensed for this report. To view the

full discussion, please see the original submission.

gzeoneth (Arbitrum) disputed and commented:

The delay buffer is an intermediary goal and not a final goal. The purpose of

the delay buffer is to provide force inclusion assurances. The delay buffer

updates are staggered and the buffer updates proactively in the force

inclusion method

(https://github.com/OffchainLabs/bold/blob/32eaf85e8ed45d069eb77e2

99b71fd6f3924bf40/contracts/src/bridge/SequencerInbox.sol#L309).

The behavior described is not unexpected and does not have impact on

force inclusion.

Picodes (judge) decreased severity to Low/Non-Critical and commented:

This report shows how the delay buffer update could be nondeterministic

and depend on how messages are included, but as shown by the sponsor

fails to demonstrate why this would be important and how this fulfills the

definition of Medium severity (function of the protocol or its availability

could be impacted).

Picodes (judge) increased severity to Medium and commented:

A�er further discussion, this issue is to me somewhere between “function

incorrect as to spec, state handling”, and “availability issue”.

Considering:

that the impact of the end-user not being able to force-include a message

as soon as possible is that its funds may be locked for some time.

that if the sequencer is down, there may be multiple messages to force-

include, and that the depletion is advertised in various places but is non-

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 15/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2142840454
https://github.com/OffchainLabs/bold/blob/32eaf85e8ed45d069eb77e299b71fd6f3924bf40/contracts/src/bridge/SequencerInbox.sol#L309
https://github.com/OffchainLabs/bold/blob/32eaf85e8ed45d069eb77e299b71fd6f3924bf40/contracts/src/bridge/SequencerInbox.sol#L309
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2148500563
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2159204017

deterministic and could be “manipulated” to delay the following message,

I’ll upgrade to Medium.

godzillaba (Arbitrum) commented:

that the impact of the end-user not being able to force-include a message

as soon as possible is that its funds may be locked for some time

@Picodes - I’m not sure this is true. In the example @0x73696d616f gave

with 3 messages (m1,m2,m3 at T1,T2,T3), m1 not being included right away

does not cause funds to be locked since m1 is included when m2 is included

at T2, and m1 could have been included at any time between T1 and T2.

Picodes (judge) commented:

@godzillaba - I meant locked for some time. Funds can’t be withdrawn as

soon as they should because the buffer isn’t depleting as fast as it should.

godzillaba (Arbitrum) commented:

If the same user (eg someone playing in an L3’s bold game) submits m2 and

m3, and they force include only their own messages promptly (as in the

example where there is a claimed bug) they are not affected. That user, the

force includer, still can only experience some max amount of sequencer

censorship over a given time period.

gzeoneth (Arbitrum) commented:

Arbitrum’s protocol has always been optimistic, we build most of our logic

under the assumption of a honest participant exists. e.g.

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/main/README.md

It is assumed … honest validators can react to malicious action broadcasted

on-chain immediately in the same block unless the malicious party spend

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 16/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2159501680
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2159552028
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2159567381
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2159600468
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/README.md
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/main/README.md

their censorship budget.

This is unless the function is designed to be non-admin permissioned, then

we enforce straighter guarantee. e.g.

There is a correct fix that is applied in the delayProofImpl() but not in

forceInclusion() .

Batch poster’s delayProofImpl have the “correct fix” where

permissionless forceInclusion do not. This is by design to limit the

complexity of the contracts.

If anyone is concerned about the total delay of delayed message, it is

assumed they SHOULD force include as soon as possible. If they do not call

force include, there are no protocol guarantee their message will ever be

included. Any delay in calling forceInclusion on parent chain can be

modeled as part of the censorship budget of an attacker.

Picodes (judge) commented:

@0x73696d616f - Can you please edit your PoC to show a force-inclusion

reverting in one scenario because of the delay whereas in the other it works.

0x73696d616f (warden) commented:

Here is a POC showing how the buffer is correctly depleted only if

messages are included sequentially. The buffer gets depleted due to actively

including messages sequentially. If the second message in the loop is

included directly instead, the buffer is not correctly depleted, and instead of

ending up being the minimum, is a much larger value (600 vs 7320). Thus,

users have to wait 2000 blocks instead of 600. It can be confirmed that

initially they have to wait 2000 blocks, but in the end only 600, if we

include sequentially and fix this bug. If we don’t include sequentially, they

still have to wait 2000 blocks.

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 17/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2160655989
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2160745501

We can play around with the numbers and observe different outcomes, but

this is a real, proven risk. Here users have to wait 2000/600 = 3.3 times

more to get their transaction force included. This issue will happen, how it

happens depends on the conditions. The buffer being depleted is an

expected scenario and the code is built to handle this situation, so

arguments based on the fact that this will never happen do not stand. The

impact depends on delayBlocks , threshold , max , replenishRate and

user behaviour. We can find a lot of combinations showing very strong

impact, as well as some showing less impact, but we know for sure this is a

real risk. A list of parameters or user behavior that increase/decrease the

impact can be made, but it does not erase the fact that this risk exists. It fits

exactly in the definition of a medium severity issue:

with a hypothetical attack path with stated assumptions, but external

requirements.

function test_POC_InconsistentBuffer_Decrease() public {
 bool fix = false;
 maxTimeVariation.delayBlocks = 2000;
 BufferConfig memory configBufferable = BufferConfig({
 threshold: 600, //60 * 60 * 2 / 12
 max: 14400, //24 * 60 * 60 / 12 * 2
 replenishRateInBasis: 714
 });

 (SequencerInbox seqInbox, Bridge bridge) = deployRollup
 address delayedInboxSender = address(140);
 uint8 delayedInboxKind = 3;
 bytes32 messageDataHash = RAND.Bytes32();

 for (uint i = 0; i < 7; i++) {
 vm.startPrank(dummyInbox);
 bridge.enqueueDelayedMessage(delayedInboxKind, dela
 vm.roll(block.number + 1100);
 bridge.enqueueDelayedMessage(delayedInboxKind, dela
 vm.stopPrank();

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 18/37

 vm.roll(block.number + 2001);
 uint256 delayedMessagesRead = bridge.delayedMessage
 if (fix) {
 seqInbox.forceInclusion(
 delayedMessagesRead - 1,
 delayedInboxKind,
 [uint64(block.number - 3101), uint64(bl
 0,
 delayedInboxSender,
 messageDataHash
);
 }
 seqInbox.forceInclusion(
 delayedMessagesRead,
 delayedInboxKind,
 [uint64(block.number - 2001), uint64(block.
 0,
 delayedInboxSender,
 messageDataHash
);
 }
 (uint256 bufferBlocks, ,,,,) = seqInbox.buffer();
 assertEq(bufferBlocks, fix ? 600 : 7320);

 vm.startPrank(dummyInbox);
 bridge.enqueueDelayedMessage(delayedInboxKind, delayedI
 vm.stopPrank();
 vm.roll(block.number + 601);
 uint256 delayedMessagesRead = bridge.delayedMessageCoun

 if (!fix) vm.expectRevert(ForceIncludeBlockTooSoon.sele
 seqInbox.forceInclusion(
 delayedMessagesRead,
 delayedInboxKind,
 [uint64(block.number - 601), uint64(block.times
 0,
 delayedInboxSender,
 messageDataHash
);
}

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 19/37

Picodes (judge) commented:

With the above PoC in a longer sequence the effect on the sequenced -

start gets indeed neutralized and we’re back with a DoS issue. This is

Medium severity.

Submitted by SpicyMeatball, also found by dontonka and josephdara

An error in the BOLDUpgradeAction.sol contract prevents it from upgrading

and deploying new BOLD contracts.

The perform function serves as the entry point in the

BOLDUpgradeAction.sol and is responsible for migrating stakers from the

old rollup and deploying the challenge manager with a new rollup contract.

One of the first subroutines in this function is the cleanupOldRollup() .

This subroutine pauses the old rollup contract and attempts to refund existing

stakers.

[M-02] BOLDUpgradeAction.sol will fail to upgrade

contracts due to error in the perform function

Impact

Proof of Concept

 function perform(address[] memory validators) external
 // tidy up the old rollup - pause it and refund sta
 cleanupOldRollup();

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 20/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/55#issuecomment-2160982040
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/5
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/53
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/34
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/5
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/5

This function contains a bug that prevents execution of the subsequent

procedures. Let’s check the forceRefundStaker in the old rollup contract.

According to: https://docs.arbitrum.io/build-decentralized-

apps/reference/useful-addresses

Proxy:

https://etherscan.io/address/0x5eF0D09d1E6204141B4d37530808eD19f6

0FBa35

Implementation:

https://etherscan.io/address/0x72f193d0f305f532c87a4b9d0a2f407a3f4f5

85f#code

 function cleanupOldRollup() private {
 IOldRollupAdmin(address(OLD_ROLLUP)).pause();

>> uint64 stakerCount = ROLLUP_READER.stakerCount();
 // since we for-loop these stakers we set an arbitr
 // expect any instances to have close to this numbe
 if (stakerCount > 50) {
 stakerCount = 50;
 }
 for (uint64 i = 0; i < stakerCount; i++) {
>> address stakerAddr = ROLLUP_READER.getStakerAdd
 OldStaker memory staker = ROLLUP_READER.getStak
 if (staker.isStaked && staker.currentChallenge
 address[] memory stakersToRefund = new addr
 stakersToRefund[0] = stakerAddr;

 IOldRollupAdmin(address(OLD_ROLLUP)).forceR
 }
 }

 // upgrade the rollup to one that allows validators
 DoubleLogicUUPSUpgradeable(address(OLD_ROLLUP)).upg
 }

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 21/37

https://docs.arbitrum.io/build-decentralized-apps/reference/useful-addresses
https://docs.arbitrum.io/build-decentralized-apps/reference/useful-addresses
https://etherscan.io/address/0x5eF0D09d1E6204141B4d37530808eD19f60FBa35
https://etherscan.io/address/0x5eF0D09d1E6204141B4d37530808eD19f60FBa35
https://etherscan.io/address/0x72f193d0f305f532c87a4b9d0a2f407a3f4f585f#code
https://etherscan.io/address/0x72f193d0f305f532c87a4b9d0a2f407a3f4f585f#code

RollupAdminLogic.sol

RollupCore.sol

From the above code, it is evident that the staker’s address is eventually

deleted from the _stakerList , causing the array to shrink. As a result, the

cleanupOldRollup function will throw an “array out-of-bounds” error

 function forceRefundStaker(address[] calldata staker) e
 require(staker.length > 0, "EMPTY_ARRAY");
 for (uint256 i = 0; i < staker.length; i++) {
 require(_stakerMap[staker[i]].currentChallenge
 reduceStakeTo(staker[i], 0);
>> turnIntoZombie(staker[i]);
 }
 emit OwnerFunctionCalled(22);
 }

 function turnIntoZombie(address stakerAddress) internal
 Staker storage staker = _stakerMap[stakerAddress];
 _zombies.push(Zombie(stakerAddress, staker.latestSt
>> deleteStaker(stakerAddress);
 }

 function deleteStaker(address stakerAddress) private {
 Staker storage staker = _stakerMap[stakerAddress];
 require(staker.isStaked, "NOT_STAKED");
 uint64 stakerIndex = staker.index;
 _stakerList[stakerIndex] = _stakerList[_stakerList.
 _stakerMap[_stakerList[stakerIndex]].index = staker
>> _stakerList.pop();
 delete _stakerMap[stakerAddress];
 }

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 22/37

because it tries to iterate through an array with the original number of

elements.

Coded POC

Here we use mainnet fork with only the cleanupOldRollup function.

// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import {Test} from "forge-std/Test.sol";
import "forge-std/console.sol";

struct OldStaker {
 uint256 amountStaked;
 uint64 index;
 uint64 latestStakedNode;
 // currentChallenge is 0 if staker is not in a challeng
 uint64 currentChallenge; // 1. cannot have current chal
 bool isStaked; // 2. must be staked
}

interface IOldRollup {
 function pause() external;
 function forceRefundStaker(address[] memory stacker) ex
 function getStakerAddress(uint64 stakerNum) external vi
 function stakerCount() external view returns (uint64);
 function getStaker(address staker) external view return
}

contract C4 is Test {
 IOldRollup oldRollup;
 address admin;
 function setUp() public {
 uint256 forkId = vm.createFork("https://rpc.ankr.co
 vm.selectFork(forkId);
 oldRollup = IOldRollup(0x5eF0D09d1E6204141B4d375308
 admin = 0x3ffFbAdAF827559da092217e474760E2b2c3CeDd;

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 23/37

Foundry

 }

 function test_Cleanup() public {
 vm.startPrank(admin);
 oldRollup.pause();
 uint64 stakerCount = oldRollup.stakerCount();
 // since we for-loop these stakers we set an arbitr
 // expect any instances to have close to this numbe
 if (stakerCount > 50) {
 stakerCount = 50;
 }
 for (uint64 i = 0; i < stakerCount; i++) {
 // FAILS with panic: array out-of-bounds access
 address stakerAddr = oldRollup.getStakerAddress
 OldStaker memory staker = oldRollup.getStaker(s
 if (staker.isStaked && staker.currentChallenge
 address[] memory stakersToRefund = new addr
 stakersToRefund[0] = stakerAddr;
 oldRollup.forceRefundStaker(stakersToRefund
 }
 }
 }
}

Tools Used

Recommended Mitigation Steps

 function cleanupOldRollup() private {
 IOldRollupAdmin(address(OLD_ROLLUP)).pause();

 uint64 stakerCount = ROLLUP_READER.stakerCount();
 // since we for-loop these stakers we set an arbitr
 // expect any instances to have close to this numbe
 if (stakerCount > 50) {

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 24/37

godzillaba (Arbitrum) confirmed

gzeoneth (Arbitrum) commented:

Fixed with https://github.com/OffchainLabs/bold/pull/654/.

Picodes (judge) commented:

Keeping this report as best as the mitigation takes into account the if

condition.

For this audit, 23 reports were submitted by wardens detailing low risk and

non-critical issues. The report highlighted below by Sathish9098 received

the top score from the judge.

 stakerCount = 50;
 }
+ for (uint64 i = 0; i < stakerCount;) {
 address stakerAddr = ROLLUP_READER.getStakerAdd
 OldStaker memory staker = ROLLUP_READER.getStak
 if (staker.isStaked && staker.currentChallenge
 address[] memory stakersToRefund = new addr
 stakersToRefund[0] = stakerAddr;

 IOldRollupAdmin(address(OLD_ROLLUP)).forceR
+ stakerCount -= 1;
+ } else {
+ i++;
+ }
 }

Low Risk and Non-Critical Issues

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 25/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/5#issuecomment-2142836203
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/5#issuecomment-2145631283
https://github.com/OffchainLabs/bold/pull/654/
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/5#issuecomment-2148504960
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/66

The following wardens also submitted reports: ladboy233, Rhaydden,

dontonka, K42, slvDev, Dup1337, xuwinnie, SpicyMeatball, bronze_pickaxe,

fyamf, hihen, ZanyBonzy, forgebyola, Takarez, twcctop, Audinarey,

josephdara, guhu95, zanderbyte, carlitox477, LessDupes, and KupiaSec.

The current check if (totalTimeUnrivaled < confirmationThresholdBlock) only

reverts when totalTimeUnrivaled is strictly less than

confirmationThresholdBlock. This means that if totalTimeUnrivaled is exactly

equal to confirmationThresholdBlock, the condition is not met, and the code

proceeds without reverting.

However, in the context of confirming assertions, this can be problematic. If

the totalTimeUnrivaled is exactly equal to confirmationThresholdBlock, it

implies that the confirmationThresholdBlock has not been fully passed yet. To

ensure that the assertion is confirmed only a�er the required confirmation

blocks have fully passed, the check should also include the case where

totalTimeUnrivaled is equal to confirmationThresholdBlock.

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challen

geV2/libraries/EdgeChallengeManagerLib.sol#L741-L743

[L-01] Risk of Confirming Assertion Prematurely if
totalTimeUnrivaled Equals
confirmationThresholdBlock

FILE:2024-05-arbitrum-foundation/src/challengeV2/libraries/

if (totalTimeUnrivaled < confirmationThresholdBlock) {
 revert InsufficientConfirmationBlocks(totalTime
 }

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 26/37

https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/65
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/63
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/72
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/68
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/64
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/59
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/7
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/4
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/73
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/67
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/62
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/61
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/60
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/42
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/41
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/36
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/35
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/26
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/24
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/18
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/14
https://github.com/code-423n4/2024-05-arbitrum-foundation-findings/issues/11
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L741-L743
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L741-L743
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L741-L743

The documentation states: Returns the highest power of 2 in the

differing lower bits of start and end. This means the function should

identify the highest power of 2 in the bits where start and end differ.

The function does not return the highest power of 2 in the differing lower bits;

rather, it uses the most significant differing bit to create a mask and apply it to

(end - 1).

Recommended Mitigation

- if (totalTimeUnrivaled < confirmationThresholdBlock) {
+ if (totalTimeUnrivaled <= confirmationThresholdBlock) {
 revert InsufficientConfirmationBlocks(totalTime
 }

[L-02] mandatoryBisectionHeight() not return
expected results

Expected Result

Actual Result

FILE: 2024-05-arbitrum-foundation/src/challengeV2/libraries
/EdgeChallengeManagerLib.sol

 function mandatoryBisectionHeight(uint256 start, uint256 e
 if (end - start < 2) {
 revert HeightDiffLtTwo(start, end);
 }
 if (end - start == 2) {
 return start + 1;
 }

 uint256 diff = (end - 1) ^ start;

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 27/37

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challen

geV2/libraries/EdgeChallengeManagerLib.sol#L574-L588

The current comment indicates that the function is adding a contract

authorized to put messages into the rollup’s inbox, but the function itself is

setting an outbox contract and registering it with the bridge, rather than

directly dealing with the inbox.

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/

RollupAdminLogic.sol#L113-L121

 uint256 mostSignificantSharedBit = UintUtilsLib.mos
 uint256 mask = type(uint256).max << mostSignificant
 return ((end - 1) & mask);
 }

[L-03] Misleading comment in setOutbox() function

FILE: 2024-05-arbitrum-foundation/src/rollup/RollupAdminLog

/**
 * @notice Add a contract authorized to put messages in
 * @param _outbox Outbox contract to add
 */
 function setOutbox(IOutbox _outbox) external override {
 outbox = _outbox;
 bridge.setOutbox(address(_outbox), true);
 emit OwnerFunctionCalled(0);
 }

Recommended Mitigation

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 28/37

https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L574-L588
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L574-L588
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L574-L588
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupAdminLogic.sol#L113-L121
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupAdminLogic.sol#L113-L121
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupAdminLogic.sol#L113-L121

Here’s a revised version of the comment to more accurately reflect the

function’s purpose.

There is no possibility that values are different. args.claimId value only

assigned to ard.assertionHash when creating ard variable .

/**
 * @notice Set the outbox contract for the rollup and autho
 * @param _outbox The outbox contract to be set and authori
 */
function setOutbox(IOutbox _outbox) external override {
 outbox = _outbox;
 bridge.setOutbox(address(_outbox), true);
 emit OwnerFunctionCalled(0);
}

[L-04] if (ard.assertionHash != args.claimId) {

Potentially Redundant Check Between assertionHash
and claimId in layerZeroTypeSpecificChecks()
function

FILE: Breadcrumbs2024-05-arbitrum-foundation/src/challengeV
/EdgeChallengeManager.sol

 ard = AssertionReferenceData(
 args.claimId,
 claimStateData.prevAssertionHash,
 assertionChain.isPending(args.claimId),
 assertionChain.getSecondChildCreationBlock(
 predecessorStateData.assertionState,
 claimStateData.assertionState
);

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 29/37

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challen

geV2/EdgeChallengeManager.sol#L409

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challen

geV2/libraries/EdgeChallengeManagerLib.sol#L232-L234

This comment suggests that the check is verifying the existence of the start

and end execution states and implies something about block hash entries,

which is not what the code does.

FILE: 2024-05-arbitrum-foundation/src/challengeV2/libraries
/EdgeChallengeManagerLib.sol

if (ard.assertionHash != args.claimId) {
 revert AssertionHashMismatch(ard.assertionH
 }

[L-05] Incorrect Comment Describing Execution State
Check in layerZeroTypeSpecificChecks() Function

FILE:2024-05-arbitrum-foundation/src/challengeV2/libraries
/EdgeChallengeManagerLib.sol

// check the start and end execution states exist, the bloc
 if (ard.startState.machineStatus == MachineStat
 revert EmptyStartMachineStatus();
 }
 if (ard.endState.machineStatus == MachineStatus
 revert EmptyEndMachineStatus();
 }

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 30/37

https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/EdgeChallengeManager.sol#L409
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/EdgeChallengeManager.sol#L409
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/EdgeChallengeManager.sol#L409
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L232-L234
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L232-L234
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/EdgeChallengeManagerLib.sol#L232-L234

Add appropriate comments.

The function setMinimumAssertionPeriod sets the minimumAssertionPeriod

state variable to newPeriod without performing any validation checks. This

lack of validation can lead to the assignment of invalid or unreasonable values,

which can adversely affect the contract’s behavior and security. Same to

setBaseStake() function.

Recommended Mitigation

// Check that the start and end execution states are not ru
// The machine status should not be 'RUNNING' for either th
 if (ard.startState.machineStatus == MachineStat
 revert EmptyStartMachineStatus();
 }
 if (ard.endState.machineStatus == MachineStatus
 revert EmptyEndMachineStatus();
 }

[L-06] Consequences of Missing Validation in critical
setMinimumAssertionPeriod and setBaseStake

Functions

FILE: 2024-05-arbitrum-foundation/src/rollup
/RollupAdminLogic.sol

function setMinimumAssertionPeriod(uint256 newPeriod) exter
 minimumAssertionPeriod = newPeriod;
 emit OwnerFunctionCalled(8);
 }

function setBaseStake(uint256 newBaseStake) external overri
 baseStake = newBaseStake;
 emit OwnerFunctionCalled(12);

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 31/37

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/

RollupAdminLogic.sol#L204-L207

The gas cost of the append function might exceed the gas limit set for a

transaction. This gas limit specifies the maximum amount of gas a user is

willing to spend on a transaction. This can be problematic, especially in

situations where the exact size of the appended data might not be known

beforehand.

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challen

geV2/libraries/ArrayUtilsLib.sol#L16

 }

[L-07] Inefficient Array Resizing in append() Function

FILE: 2024-05-arbitrum-foundation/src/challengeV2/libraries
/ArrayUtilsLib.sol

function append(bytes32[] memory arr, bytes32 newItem) inte
 bytes32[] memory clone = new bytes32[](arr.length +
 for (uint256 i = 0; i < arr.length; i++) {
 clone[i] = arr[i];
 }
 clone[clone.length - 1] = newItem;
 return clone;
 }

Recommended Mitigation

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 32/37

https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupAdminLogic.sol#L204-L207
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupAdminLogic.sol#L204-L207
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupAdminLogic.sol#L204-L207
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/ArrayUtilsLib.sol#L16
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/ArrayUtilsLib.sol#L16
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/challengeV2/libraries/ArrayUtilsLib.sol#L16

Use a resizable array library like OwnableArray from the OpenZeppelin

Contracts library (https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/access/Ownable.sol). These libraries offer

functions to append elements dynamically without the need to manually

allocate and copy the entire array.

Comment: “Check that deadline has passed”

This implies the deadline should be strictly in the past, meaning the current

block number must be greater than the deadline block number.

�. Change comment as per implementation.

�. Change code as per docs.

[L-08] block.number >= assertion.createdAtBlock +

prevConfig.confirmPeriodBlocks not implemented as
per docs

FILE: 2024-05-arbitrum-foundation/src/rollup
/RollupUserLogic.sol

// Check that deadline has passed
 require(block.number >= assertion.createdAtBlock +

Recommended Mitgation

// Check that deadline has passed or equal
 require(block.number >= assertion.createdAtBlock +

// Check that deadline has passed

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 33/37

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol

The reduceStakeTo function does not have any check to prevent it from being

called when staker.amountStaked is zero. This means if a staker’s

amountStaked is zero, the function can still be called, and it would set the

amountStaked to the target value, which could result in unintended behavior.

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/

RollupCore.sol#L300-L310

staker.amountStaked is 0 then the call should be reverted.

 require(block.number > assertion.createdAtBlock + p

[L-09] reduceStakeTo Function Allows Call Even with
Zero Staked Amount

FILE: 2024-05-arbitrum-foundation/src/rollup
/RollupCore.sol

 function reduceStakeTo(address stakerAddress, uint256 targ
 Staker storage staker = _stakerMap[stakerAddress];
 address withdrawalAddress = staker.withdrawalAddres
 uint256 current = staker.amountStaked;
 require(target <= current, "TOO_LITTLE_STAKE");
 uint256 amountWithdrawn = current - target;
 staker.amountStaked = target;
 increaseWithdrawableFunds(withdrawalAddress, amount
 emit UserStakeUpdated(stakerAddress, withdrawalAddr
 return amountWithdrawn;
 }

Recommended Mitigation

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 34/37

https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupCore.sol#L300-L310
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupCore.sol#L300-L310
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupCore.sol#L300-L310

require(current > 0,"zero amount staked");

There is a potential flaw related to the function stakeOnNewAssertion being

called within newStakeOnNewAssertion. The stakeOnNewAssertion function

has the whenNotPaused modifiers, meaning it should only be executed only

when the contract is not paused. However, these conditions are not enforced

within the newStakeOnNewAssertion function, leading to potential

inconsistencies.

[N-01] newStakeOnNewAssertion function reverts all
calls when contract paused

FILE: 2024-05-arbitrum-foundation/src/rollup
/RollupUserLogic.sol

function newStakeOnNewAssertion(
 uint256 tokenAmount,
 AssertionInputs calldata assertion,
 bytes32 expectedAssertionHash,
 address withdrawalAddress
) public {
 require(withdrawalAddress != address(0), "EMPTY_WIT
 _newStake(tokenAmount, withdrawalAddress);
 stakeOnNewAssertion(assertion, expectedAssertionHas
 /// @dev This is an external call, safe because it
 receiveTokens(tokenAmount);
 }

function stakeOnNewAssertion(AssertionInputs calldata asser
 public
 onlyValidator
 whenNotPaused
 {

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 35/37

https://github.com/code-423n4/2024-05-arbitrum-

foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/

RollupUserLogic.sol#L163-L167

C4 is an open organization governed by participants in the community.

C4 audits incentivize the discovery of exploits, vulnerabilities, and bugs in

smart contracts. Security researchers are rewarded at an increasing rate for

finding higher-risk issues. Audit submissions are judged by a knowledgeable

security researcher and solidity developer and disclosed to sponsoring

developers. C4 does not conduct formal verification regarding the provided

code but instead provides final verification.

Recommended Mitigation

FILE: 2024-05-arbitrum-foundation/src/rollup
/RollupUserLogic.sol

function newStakeOnNewAssertion(
 uint256 tokenAmount,
 AssertionInputs calldata assertion,
 bytes32 expectedAssertionHash,
 address withdrawalAddress
-) public {
+) public whenNotPaused {
 require(withdrawalAddress != address(0), "EMPTY_WIT
 _newStake(tokenAmount, withdrawalAddress);
 stakeOnNewAssertion(assertion, expectedAssertionHas
 /// @dev This is an external call, safe because it
 receiveTokens(tokenAmount);
 }

Disclosures

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 36/37

https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupUserLogic.sol#L163-L167
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupUserLogic.sol#L163-L167
https://github.com/code-423n4/2024-05-arbitrum-foundation/blob/6f861c85b281a29f04daacfe17a2099d7dad5f8f/src/rollup/RollupUserLogic.sol#L163-L167

C4 does not provide any guarantee or warranty regarding the security of this

project. All smart contract so�ware should be used at the sole risk and

responsibility of users.

Top

An open organization | Twitter | Discord | GitHub | Blog | Newsletter | Media kit | Careers |

code4rena.eth

8/2/24, 1:42 PM Arbitrum BoLD

https://code4rena.com/reports/2024-05-arbitrum-foundation 37/37

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://code4rena.com/blog
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://code4rena.com/careers
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

