
Arbitrum Stylus
Security Assessment

June 10, 2024

Prepared for:

Harry Kalodner, Rachel Bousfield, Lee Bousfield, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Gustavo Grieco, Jaime Iglesias, Kurt Willis, Nat Chin, Dominik Czarnota,
Benjamin Samuels, and Troy Sargent

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’s request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 7
Project Goals 9
Project Targets 10
Project Coverage 12
Codebase Maturity Evaluation 16
Summary of Findings 20
Detailed Findings 23

1. Gas for WASM program activation not charged early enough 23
2. Project contains no build instructions 25
3. WASM Merkleization is computationally expensive 26
4. WASM binaries lack memory protections against corruption 27
5. Ink is charged preemptively for reading and writing to memory 29
6. Integer overflow vulnerability in brotli-sys 31
7. Reliance on outdated dependencies 32
8. WASM validation relies on Wasmer code that could result in undefined behavior
33
9. Execution of natively compiled WASM code triggers ASan warning 35
10. Unclear program version checks 37
11. Memory leak in capture_hostio 39
12. Use of mem::forget for FFI is error-prone 40
13. Lack of safety documentation for unsafe Rust 42
14. Undefined behavior when passing padded struct via FFI 45
15. Stylus’s 63/64th gas forwarding differs from go-ethereum 47
16. Undocumented WASM/WAVM limits 49
17. Missing sanity checks for argumentData instruction 51
18. Discrepancy in EIP-2200 implementation 53
19. Tests missing assertions for some errors and values 55
20. Machine state serialization/deserialization does not account for error guards 57
21. Lack of minimum-value check for program activation 60

Trail of Bits 3 Arbitrum Stylus Security Assessment
PUBLIC

22. SetWasmKeepaliveDays sets ExpiryDays instead of KeepaliveDays 62
23. Potential nil dereference error in Node.Start 63
24. Incorrect dataPricer model update in ProgramKeepalive, causing lower cost and
demand 64
25. Machine does not properly handle WASM binaries with both Rust and Go
support 66
26. Computation of internal stack hash uses wrong prefix string 68
27. WASI preview 1 may be incompatible with future versions 70
28. Possible out-of-bounds write in strncpy function in Stylus C SDK 71
29. Insufficient out-of-bounds check in memcpy utility function for ConstString 73
30. Unused and unset timeouts in Arbitrator's JIT code 74
31. New machine hashing format breaks backward compatibility 76
32. Unclear handling of unexpected machine state transitions 79
33. Potential footguns and attack vectors due to new memory model 82
34. Storage cache can become out of sync for reentrant and delegated calls 83
35. Storage cache can be written to in a static call context 89
36. Revert conditions always override user returned status 92
37. CacheManager bids cannot be increased 94
38. The makeSpace function does not refund excess bid value and can be front-run
96
39. Bids do not account for program size 98
40. Incorrect bid check 100
41. MemoryGrow opcode is underpriced for programs with fixed memory 101

A. Vulnerability Categories 103
B. Code Maturity Categories 104
C. Sequence Diagrams 106
D. Code Quality Findings 112
E. Patch That Extends Tests and Assertions 120
F. Toward an Automated Fuzzing Process 123
G. Recommendations for Improving Integration Tests 127

Trail of Bits 4 Arbitrum Stylus Security Assessment
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Gustavo Grieco, Consultant Jaime Iglesias, Consultant
gustavo.grieco@trailofbits.com jaime.iglesias@trailofbits.com

Kurt Willis, Consultant Nat Chin, Consultant
kurt.willis@trailofbits.com natalie.chin@trailofbits.com

Troy Sargent, Consultant Dominik Czarnota, Consultant
troy.sargent@trailofbits.com dominik.czarnota@trailofbits.com

Benjamin Samuels, Consultant
benjamin.samuels@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

October 2, 2023 Pre-project kickoff call

October 10, 2023 Status update meeting #1

October 16, 2023 Status update meeting #2

October 20, 2023 Status update meeting #3

November 3, 2023 Status update meeting #4

November 15, 2023 Status update meeting #5

December 4, 2023 Status update meeting #6

Trail of Bits 5 Arbitrum Stylus Security Assessment
PUBLIC

mailto:mary.obrien@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:gustavo.grieco@trailofbits.com
mailto:jaime.iglesias@trailofbits.com
mailto:kurt.willis@trailofbits.com
mailto:natalie.chin@trailofbits.com
mailto:troy.sargent@trailofbits.com
mailto:dominik.czarnota@trailofbits.com
mailto:troy.sargent@trailofbits.com

December 21, 2023 Status update meeting #7

January 16, 2024 Status update meeting #8

January 22, 2024 Status update meeting #9

March 7, 2024 Pre-project kickoff call for the Stylus interop layer

March 18, 2024 Status update meeting #10

March 25, 2024 Status update meeting #11

April 1, 2024 Status update meeting #12

April 8, 2024 Status update meeting #13

April 15, 2024 Status update meeting #14

April 22, 2024 Delivery of report draft

April 22, 2024 Report readout meeting

June 10, 2024 Delivery of comprehensive report

Trail of Bits 6 Arbitrum Stylus Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of Stylus. Stylus is an upgrade to
Arbitrum Nitro that enables a new way to write smart contracts by introducing a second,
coequal virtual machine (VM) that is fully interoperable with the EVM.

A team of six consultants conducted the review from October 30, 2023, to May 3, 2024, for
a total of 47 engineer-weeks of effort. Our testing efforts focused on the Stylus VM and its
associated smart contracts. With full access to source code and documentation, we
performed static and dynamic testing of the Stylus codebase, using automated and manual
processes. A detailed description of the scoping per component is provided in the Project
Coverage section.

Observations and Impact
The Stylus audit revealed a number of issues, mostly of low and informational severity,
related to WASM program activation/handling/processing (e.g., TOB-STYLUS-1), EVM
compatibility (e.g., TOB-STYLUS-15), and cache handling (TOB-STYLUS-34). In general, we
found the code to be very robust, with a small number of corner-case but low-impact bugs.
However, we must state that the complexity of the code is very high, and it would have
been extremely difficult to review without the accompanying documentation, code
walkthroughs, and constant communication with the client.

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Offchain Labs take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Expand the unit, end-to-end, and random testing. The codebase needs to be
extensively tested with traditional unit tests and smart fuzzing in order to detect
unreliable code and potential points of failure. Appendix F and appendix G provide
concrete recommendations.

Trail of Bits 7 Arbitrum Stylus Security Assessment
PUBLIC

Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 2

Medium 6

Low 10

Informational 21

Undetermined 2

CATEGORY BREAKDOWN

Category Count

Configuration 1

Data Validation 16

Error Reporting 1

Patching 3

Testing 1

Undefined Behavior 19

Trail of Bits 8 Arbitrum Stylus Security Assessment
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of Arbitrum Stylus.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Are WASM programs deterministic after instrumentation?

● Do instrumented WASM programs terminate in a finite number of steps?

● Is there a risk of denial of service?

● Can instrumented WASM programs overflow the host stack?

● Does the middleware accurately track the gas used by user programs?

● Are there differences between the native, JIT, and prover execution modes?

● Are there reachable panics that could cause the node to crash?

● Do the host I/O implementations for the native and prover execution modes diverge
in any way?

● Could the use of unsafe Rust and the FFI result in undefined behavior?

● Can users cause excess resource consumption without incurring costs?

● Can error guards be popped outside of user WASM code?

● Are all provided premachine states correctly validated in the one-step prover?

● Is serialization for the one-step prover done correctly?

● Is the price for activating programs applied correctly?

● Is it possible to bypass program expirations to execute programs after they should
have expired?

● Does the activation pricing formula produce the intended price?

● Are there any potential denial-of-service vectors due to mispricing?

Trail of Bits 9 Arbitrum Stylus Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

stylus
Repository https://github.com/OffchainLabs/stylus

Versions fc0a69d (week 1, 2)

0509a98 (week 3, 4, 5, 6)

3d3cc66 (week 7)

233660e (week 8)

1d507c3 (week 9)

4d47f3cfb (week 10, 11)

Individual PRs PR #208: A host I/O operation for early program exit

PR #209: Rust-side storage cache

 PR #217: Support for Dencun handling of SELF_DESTRUCT

 PR #212: Custom Brotli dictionaries

 PR #220: Compression of modules in the prover

 PR #215: Consolidation of Stylus parameters

 PR #218: Status code simplification

PR #224: Transient storage host I/O operations

PR #225: Math host I/O operations

PR #227: Optimization of function Merkleization

PR #223, PR #228, PR #41: Cache manager–related PRs

PR #230: Memory edge cases

PR #234: Init pricer and mainnet constants

Type Rust

stylus-contracts
Repository https://github.com/OffchainLabs/stylus-contracts

Version bb98714

Trail of Bits 10 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus
https://github.com/OffchainLabs/stylus/pull/208
https://github.com/OffchainLabs/stylus/pull/209
https://github.com/OffchainLabs/stylus/pull/217
https://github.com/OffchainLabs/stylus/pull/212
https://github.com/OffchainLabs/stylus/pull/220
https://github.com/OffchainLabs/stylus/pull/215
https://github.com/OffchainLabs/stylus/pull/218
https://github.com/OffchainLabs/stylus/pull/224
https://github.com/OffchainLabs/stylus/pull/225
https://github.com/OffchainLabs/stylus/pull/227
https://github.com/OffchainLabs/stylus/pull/223
https://github.com/OffchainLabs/stylus/pull/228
https://github.com/OffchainLabs/stylus-contracts/pull/41
https://github.com/OffchainLabs/stylus/pull/230
https://github.com/OffchainLabs/stylus/pull/234
https://github.com/OffchainLabs/stylus-contracts

Type Solidity

wasmer
Repository https://github.com/OffchainLabs/wasmer

Version 80125b5

Type Rust

stylus-geth
Repository https://github.com/OffchainLabs/stylus-geth

Version 27113b8 (week 1, 2)

991e082 (week 3, 4)

Type Go

Trail of Bits 11 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/wasmer
https://github.com/OffchainLabs/stylus-geth

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Stylus VM: Stylus introduces the ability to deploy WASM programs that are
executed in a second virtual machine that works alongside the existing EVM. Stylus
programs use “ink” (a form of gas), which limits their execution and prevents denial
of service. During the engagement, we reviewed the implementation of the different
Stylus opcodes, the way ink is charged to Stylus programs, and the behavior of the
VM when a program errors out, panics, or runs out of ink.

● Activation: WASM programs were not created to run on blockchains, so they lack
key features such as gas metering and come with certain operations that should not
be allowed on distributed networks. To include gas metering and to ensure that
these programs can be safely executed by the network, Stylus programs need to be
instrumented (i.e., they need to be parsed to insert gas-metering operations and to
validate that they work within the network’s rules). This expensive instrumentation
and compilation process is called “activation,” and it produces WASM programs that
can be executed by the network. During our review, we covered the activation
process to ensure that gas metering is applied properly, that limitations on user
WASM binaries are applied, and that the activation gas cost is charged
appropriately; we also checked for different denial-of-service scenarios.

● Execution modes: Stylus provides three different execution modes for validators:
native, JIT, and prover.

○ Native execution mode uses WASM binaries that are compiled into x86/ARM
native code to run them at full speed.

○ In prover mode, users run the same WAVM execution inside the Stylus VM in
order to resolve fraud proof challenges. It is the slowest mode, but it offers
the highest security guarantees of the three.

○ JIT execution is an intermediate execution mode between native and prover,
in which users run the same WASM binaries they would run in native
execution mode. It offers higher security guarantees than native execution.

○ Each mode has a different code path inside Stylus and requires user
programs to be compiled in different ways. We looked for any divergences in
behavior between the modes and looked for corner cases related to the
nuances of each mode (e.g., whether a thread could time out in JIT mode).
We also verified that user Stylus programs cannot interfere with the main

Trail of Bits 12 Arbitrum Stylus Security Assessment
PUBLIC

thread, which performs important operations such as starting user programs
and verifying return codes.

● Fraud proof system: All the Arbitrum L2 transactions are executed by validators
and can be challenged by any user who believes the validators are not honest.
During a challenge, the entire block is re-executed in order to determine whether
the state is valid and to resolve the challenge, and a proof of the final state is
provided. We reviewed the following components of the fraud proof system:

○ Arbitrator: The Arbitrator is a Rust implementation of the Stylus VM that runs
when there is a challenge (i.e., it is meant to be run by validators).

○ One Step Proof (OSP): The OSP is a collection of Solidity smart contracts that
allow users to emulate a single instruction on Ethereum to prove its
execution. It is the lowest level of granularity a challenge can reach.

○ Program linking component: During the execution of fraud proof verification,
instead of bisecting the vanilla replay machine’s execution of a block,
validators bisect execution of user programs, which are dynamically linked in
and out over the course of execution, to fraud proof them directly.

During the review, we looked for any correctness issues in the Arbitrator, such as
those that could cause the Arbitrator to force a prover to validate an incorrect state
or prevent a prover from validating a correct state. Since part of the fraud proof
system is performed on-chain, we looked for Solidity/EVM-related issues and
practical limitations that could block the use of the OSP during challenges (e.g.,
issues that could cause consumption of excessive gas).

● Host I/O operations: When a Stylus contract needs to access EVM state, or perform
other operations that are not possible in pure WASM, it needs to use the host I/O
operations from the Stylus VM for interacting with the contract’s environment.

During the review, we looked for any possible discrepancies between the
implementations of host I/O operations in the three execution modes, ensured that
host I/O operations are properly priced, and looked for issues that could cause
invalid or incorrect data that would impact such operations (e.g., address overflows,
dangling pointers, etc.).

● The memory model: Stylus introduces a novel VM for which no deployed contracts
currently exist. This provided the Stylus developers an opportunity to fix the
mistakes of the EVM related to memory; the main difference between Stylus’s
memory model and the EVM is that memory pricing is global instead of “per call
stack.”

Trail of Bits 13 Arbitrum Stylus Security Assessment
PUBLIC

During the review, we checked whether the memory model is applied properly and
looked for edge cases in the new design such as interactions between both models
(EVM and Stylus) in the same transaction.

● Error guards: At the start of the review, a feature called “error guards” existed.
These guards were inserted into user WASM programs during the proving process
to allow the proving system to recover from user program errors.

Later during the review, this feature was removed and reintroduced in a different
form with the use of co-threads; co-threads that error out can reenter the main
thread at a preestablished program counter. We reviewed the implementation to
ensure that it works as intended.

● Stylus messages, WASI, and co-threads: WASI allows the Go compiler to target
WASM binaries through a standardized API. WASI replaced the previous JavaScript
environment in Stylus.

Because the Go compiler does not support exports, it is not possible for WASM to
call back into Go, which is necessary for Stylus programs to execute host I/O
operations. (Note that this is only for the JIT and prover execution modes.) To get
around this limitation, the Stylus VM uses threads (for JIT execution) and co-threads
(for prover execution).

The basic idea of co-threads is that only a single thread is ever running at a given
time (i.e., there is no parallelization), and that thread is executing either the “main
thread” or a Stylus program (each call to a Stylus program will create a new thread).
Whenever a Stylus program wants to perform a host I/O operation, it has to return a
request ID and halt its execution; this request is then picked up by the main thread,
which sends the response back to the Stylus program thread and the program
resumes execution until it ends.

The implementation of co-threads differs between the JIT and prover execution
modes, but the basic idea is the same. The main difference is that in the JIT
execution mode, actual system threads are spawned, and the main thread and the
threads executing Stylus programs communicate using synchronous channels; on
the other hand, in the prover execution mode, there is only a single thread, but each
time a Stylus program is called, the user program is linked to the Arbitrator machine
(i.e., becomes part of the machine state) and a new value stack and frame stack are
created.

We checked whether co-threads are correctly implemented and considered
scenarios such as the ones below to look for corner cases:

○ What happens if a Stylus program calls itself?

Trail of Bits 14 Arbitrum Stylus Security Assessment
PUBLIC

https://go.dev/blog/wasi

○ What happens when delegatecall is used?

○ What happens if a Stylus upgrade is made while a Stylus program is linked (is
running in a co-thread)?

○ How do co-threads react to errors and panics?

○ Can a Stylus program or the main thread hang?

○ Is there a way to force a channel to time out in JIT mode?

○ Is the computational cost of using channels properly accounted for?

Finally, we checked whether the differences between the native, JIT, and prover
execution implementations result in discrepancies in their execution.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● Most of the WASM code, except the specific Offchain modifications, was out of
scope.

● We assumed that the Go and Rust compiler WASM generation code is correct.

● We did not verify that native execution mode behaves the same for x86 and ARM.
We performed only some fuzzing testing, mainly on x86. In order to ensure this
property, a large differential fuzzing campaign should be performed.

● The Stylus SDK was out of scope.

Trail of Bits 15 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/wasmer/commits/061b594dfc8eaa336b2840dbdc3f83ceac4ed5e0/

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic While Stylus is not, generally speaking, an
arithmetic-heavy codebase, it still contains critical code
that uses mathematical operations, such as pointer
arithmetic in the host I/O operations and the memory
model. All arithmetic operations we observed use
saturating math, but they are not always implemented
consistently between the execution modes, which could
result in high-severity issues if the code fails to behave in
the same way. Additionally, not all expected properties
and corner cases are properly documented, and the
relevant code is not extensively fuzz tested to ensure it is
robust.

Moderate

Auditing Our review of the system’s smart contracts was very
limited in this audit. Despite our limited review, we found
that events are emitted for all relevant on-chain
contracts; additionally, there are several instances of
logging and debugging options in the off-chain
components.

Satisfactory

Authentication /
Access Controls

Most of the Stylus components define permissionless
features allowing users to activate or run any program as
long as it is valid. These features do, however, introduce
a number of chain parameters. These parameters are
correctly handled in the ArbOS state configuration, which
is accessible only to the chain owner.

Satisfactory

Complexity
Management

In its current state, the complexity of the Stylus codebase
is high. Some of this complexity is inherent to the
software stack used (i.e., because it has to be used to
prove the execution of arbitrary EVM and WASM user
programs).

Moderate

Trail of Bits 16 Arbitrum Stylus Security Assessment
PUBLIC

However, some of the complexity stems from its maturity
and the state of some of the features of the
dependencies that Stylus relies on (e.g., Wasmer and the
Go compiler); the Stylus developers had to create
workarounds for some of the current shortcomings of
these dependencies until they are addressed in future
versions. Currently, the following are the two biggest
sources of complexity:

1. The existence of a third execution mode (JIT),
which uses system threads and synchronous
communication to execute Stylus programs.
While we understand the reasoning behind the
existence of this mode and we do not
recommend removing it immediately, it definitely
adds a lot of complexity to the code, as it is
basically a third execution path with its own
particular nuances. We recommend considering
removing this execution mode over the long term
as the codebase matures.

2. Because the Go compiler does not support
exports for WASM to call back into Go, Stylus
programs cannot perform host I/O operations
directly; instead, they have to rely on co-threads
and requests. This adds another layer of
complexity due to the back-and-forth
communication.

Decentralization The Stylus VM does not alter the decentralization
characteristics of Arbitrum networks that integrate it.

Not
Considered

Documentation During the review, the Offchain Labs team consistently
provided us with documentation, in the form of a Notion
file, to help us understand the system and the features
under review. As expected, given the duration of this
review, the system evolved during the engagement; for
example, the JavaScript environment was replaced by
WASI, which made certain details of the documentation
outdated. To facilitate future audits, we recommend that
the Offchain Labs team bring the documentation up to
date with the current state of the codebase and formalize
it in a single source.

Additionally, we were provided with a couple of code

Moderate

Trail of Bits 17 Arbitrum Stylus Security Assessment
PUBLIC

walkthroughs during the engagement, which we found
extremely useful for understanding the system. We
recommend developing a public-facing (or, at least,
internal) walkthrough for newcomers to understand the
system.

Finally, there are certain nuances, assumptions, and
component properties that need more documentation,
such as the way memory/object ownership between Rust
and Go works and the limitations of the pointers passed
by Stylus programs when executing host I/O operations.
These nuances are well known and understood by the
Stylus team but need to be written down to be
referenced by both reviewers and developers.

Low-Level
Manipulation

The WASM program activation code relies heavily on
inserted snippets of WASM instructions in order to make
untrusted code reliable to run in validators. Each of the
middleware used needs additional documentation to
explain in detail (e.g., line by line) how the assembly is
used and how it is expected to run.

Moderate

Memory Safety
and Error
Handling

Both Go and Rust are languages that safely manage
memory; however, a lot of the Go and Rust code in the
codebase bypasses memory safeness in order to
perform cross-language calls. This is a potential source of
high-severity issues, which are usually very hard to detect
through manual review. While static analyzers are usually
capable of reasoning about the memory safety of
languages such as Go and Rust, this codebase uses
unsafe features, which renders the reasoning ineffective.

Finally, the use of random testing is limited; it should be
expanded, as it seems to be the best tool available to find
this kind of issue.

Further
Investigation
Required

Testing and
Verification

There are extensive unit tests, such as the ones found in
the system_tests folder, for most parts of the system;
however, the system needs extensive unit tests for
scenarios such as corner cases. Additionally, random
testing (a.k.a. fuzzing) is sporadically used; we
recommend expanding the use of random testing for a
more end-to-end approach. More extensive testing
recommendations are provided in appendix F and
appendix G.

Moderate

Trail of Bits 18 Arbitrum Stylus Security Assessment
PUBLIC

Transaction
Ordering

There are certain instances in which transaction ordering
could lead to unintended behavior, such as when placing
bids or making space in the long-term cache contract
(TOB-STYLUS-38); however, these are expected in this
type of system (i.e., on-chain auction).

These instances need to be documented so that users
are aware of them.

Moderate

Trail of Bits 19 Arbitrum Stylus Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Gas for WASM program activation not charged
early enough

Data Validation Medium

2 Project contains no build instructions Testing Informational

3 WASM Merkleization is computationally expensive Data Validation Low

4 WASM binaries lack memory protections against
corruption

Undefined
Behavior

Low

5 Ink is charged preemptively for reading and
writing to memory

Undefined
Behavior

Low

6 Integer overflow vulnerability in brotli-sys Patching Low

7 Reliance on outdated dependencies Patching Informational

8 WASM validation relies on Wasmer code that
could result in undefined behavior

Undefined
Behavior

Medium

9 Execution of natively compiled WASM code
triggers ASan warning

Undefined
Behavior

Informational

10 Unclear program version checks Undefined
Behavior

Informational

11 Memory leak in capture_hostio Undefined
Behavior

Informational

12 Use of mem::forget for FFI is error-prone Undefined
Behavior

Undetermined

Trail of Bits 20 Arbitrum Stylus Security Assessment
PUBLIC

13 Lack of safety documentation for unsafe Rust Undefined
Behavior

Informational

14 Undefined behavior when passing padded struct
via FFI

Undefined
Behavior

Undetermined

15 Stylus’s 63/64th gas forwarding differs from
go-ethereum

Undefined
Behavior

Low

16 Undocumented WASM/WAVM limits Undefined
Behavior

Informational

17 Missing sanity checks for argumentData
instruction

Undefined
Behavior

Informational

18 Discrepancy in EIP-2200 implementation Undefined
Behavior

Informational

19 Tests missing assertions for some errors and
values

Error Reporting Low

20 Machine state serialization/deserialization does
not account for error guards

Undefined
Behavior

Low

21 Lack of minimum-value check for program
activation

Data Validation Informational

22 SetWasmKeepaliveDays sets ExpiryDays instead
of KeepaliveDays

Undefined
Behavior

Medium

23 Potential nil dereference error in Node.Start Data Validation Informational

24 Incorrect dataPricer model update in
ProgramKeepalive, causing lower cost and
demand

Undefined
Behavior

High

25 Machine does not properly handle WASM binaries
with both Rust and Go support

Data Validation Low

26 Computation of internal stack hash uses wrong
prefix string

Data Validation Informational

Trail of Bits 21 Arbitrum Stylus Security Assessment
PUBLIC

27 WASI preview 1 may be incompatible with future
versions

Patching Informational

28 Possible out-of-bounds write in strncpy function
in Stylus C SDK

Data Validation Medium

29 Insufficient out-of-bounds check in memcpy utility
function for ConstString

Data Validation Medium

30 Unused and unset timeouts in Arbitrator's JIT
code

Configuration Informational

31 New machine hashing format breaks backward
compatibility

Data Validation Informational

32 Unclear handling of unexpected machine state
transitions

Undefined
Behavior

Informational

33 Potential footguns and attack vectors due to new
memory model

Undefined
Behavior

Informational

34 Storage cache can become out of sync for
reentrant and delegated calls

Data Validation High

35 Storage cache can be written to in a static call
context

Data Validation Low

36 Revert conditions always override user returned
status

Data Validation Low

37 CacheManager bids cannot be increased Data Validation Informational

38 The makeSpace function does not refund excess
bid value and can be front-run

Undefined
Behavior

Informational

39 Bids do not account for program size Data Validation Informational

40 Incorrect bid check Data Validation Informational

Trail of Bits 22 Arbitrum Stylus Security Assessment
PUBLIC

41 MemoryGrow opcode is underpriced for
programs with fixed memory

Data Validation Medium

Detailed Findings

1. Gas for WASM program activation not charged early enough

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-1

Target: arbos/programs/programs.go

Description
The gas for activating WASM programs is not charged early enough in the activation code to
prevent denial-of-service attacks.

WASM activation is a computationally expensive operation that involves decompressing
bytecode (figure 1.1).

func (p Programs) ActivateProgram(evm *vm.EVM, program common.Address, debugMode
bool) (uint16, bool, error) {

statedb := evm.StateDB
codeHash := statedb.GetCodeHash(program)

version, err := p.StylusVersion()
if err != nil {

return 0, false, err
}
latest, err := p.CodehashVersion(codeHash)
if err != nil {

return 0, false, err
}
// Already compiled and found in the machine versions mapping.
if latest >= version {

return 0, false, ProgramUpToDateError()
}
wasm, err := getWasm(statedb, program)
if err != nil {

return 0, false, err
}

{...omitted for brevity...}

Trail of Bits 23 Arbitrum Stylus Security Assessment
PUBLIC

}

func getWasm(statedb vm.StateDB, program common.Address) ([]byte, error) {
{...omitted for brevity...}
return arbcompress.Decompress(wasm, MaxWasmSize)

}

Figure 1.1: WASM program activation–related code in arbos/programs/programs.go#L84
and #L233

However, if Brotli’s decompression fails, the user will not be charged for activating the
program, which can be expensive.

Exploit Scenario
Eve creates a specially crafted compressed WASM bytecode with a corrupted bit at the end,
with the purpose of slowing down the Arbitrum chain. The corrupted bit causes a failure
during decompression, allowing her to avoid paying full price for her program, making her
attack cheaper than expected.

Recommendations
Short term, charge gas as early as possible during WASM program activation; gas should be
charged even if activation fails for any reason.

Long term, review each computationally expensive operation that can be arbitrarily
triggered by users to ensure it is properly priced.

Trail of Bits 24 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbos/programs/programs.go#L84
https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbos/programs/programs.go#L233

2. Project contains no build instructions

Severity: Informational Difficulty: Low

Type: Testing Finding ID: TOB-STYLUS-2

Target: README.md

Description
The Stylus repository contains information regarding the project, a roadmap, and
information regarding gas pricing, but it lacks other essential information. The repository’s
README should include at least the following:

● Instructions for building the project

● Instructions for running the built artifacts

● Instructions for running the project’s tests

Note that the repository contains a makefile with convenient scripts; however, repositories
of this size (e.g., involving a lot of dependencies and Git submodules) are often difficult to
build even for experienced developers. Therefore, having building instructions and
solutions to common build problems would greatly speed up developer onboarding.

Exploit Scenario
Alice, a developer, tries to build the Stylus repository; however, she faces problems building
it due to the missing documentation in the README, and she makes a mistake in the
procedure that causes the build to fail.

Recommendations
Short term, add the minimum information listed above to the repository’s README. This
will help developers to build, run, and test the project.

Long term, as the project evolves, ensure that the README is updated. This will help ensure
that it does not communicate incorrect information to users.

Trail of Bits 25 Arbitrum Stylus Security Assessment
PUBLIC

3. WASMMerkleization is computationally expensive

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-3

Target: arbitrator/prover/src/machine.rs

Description
A WASM binary with a large global table (e.g., (table (;0;) 1000000 1000000
externref)) will require a few seconds of computation to iterate over and hash all table
elements (figure 3.1).

// Merkleize things if requested
for module in &mut modules {

for table in module.tables.iter_mut() {
table.elems_merkle = Merkle::new(

MerkleType::TableElement,
table.elems.iter().map(TableElement::hash).collect(),

);
}

let tables_hashes: Result<_, _> =
module.tables.iter().map(Table::hash).collect();

module.tables_merkle = Merkle::new(MerkleType::Table, tables_hashes?);

if always_merkleize {
module.memory.cache_merkle_tree();

}
}

Figure 3.1: A Merkle tree of all table elements being generated
(arbitrator/prover/src/machine.rs#L1395-L1410)

Exploit Scenario
Eve creates a specially crafted WASM binary containing huge global tables, slowing down
the chain.

Recommendations
Short term, reduce the number of table elements that a global table can have to speed up
the module parsing process. Consider charging ink for this computation based on the
number of elements hashed.

Long term, review each computationally expensive operation that can be arbitrarily
triggered by users to ensure it is properly priced.

Trail of Bits 26 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/fc0a69d9a9e9fecfa7ae7ed028d16fc84b4ee62a/arbitrator/prover/src/machine.rs#L1395-L1410

4. WASM binaries lack memory protections against corruption

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STYLUS-4

Target: arbitrator

Description
Arbitrum compiles user program components to WASM to be run on the network. WASM
binaries do not feature modern binary protections that are available by default in native
binaries; they are missing most of the common memory safety checks and are vulnerable
to related attack primitives (figure 4.1). Arbitrum’s compilation to WASM could introduce
deviations between native and on-chain execution of a user program.

Figure 4.1: An overview of the attack primitives and the missing defenses in the binaries

The USENIX 2020 paper “Everything Old Is New Again: Binary Security of WebAssembly”
describes in depth the binary defenses that are missing and new attacks that can be
exploited in WASM binaries if memory-unsafe operations are performed.

Trail of Bits 27 Arbitrum Stylus Security Assessment
PUBLIC

https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann

Other languages provide memory safety in the compiler. Therefore, code that executes
safely natively with such checks may not execute the same on-chain.

Exploit Scenario
A user creates a Stylus contract using C/C++ that contains an unsafe memory operation.
The user tests the code natively, running it with all the compiler protections enabled, which
prevent that operation from being an issue. However, once the user deploys the contract
on-chain, an attacker exploits the unsafe memory operation with a shellcode.

Recommendations
Short term, provide documentation advising users to use memory-safe languages.
Additionally, advise users to perform extensive testing of any memory-unsafe code that is
compiled to WASM to prevent exploitable memory issues.

Long term, review the state of the WASM compiler to evaluate the maturity of its binary
protections.

Trail of Bits 28 Arbitrum Stylus Security Assessment
PUBLIC

5. Ink is charged preemptively for reading and writing to memory

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STYLUS-5

Target: arbitrator/stylus/src/host.rs

Description
Some host operations for reading and writing to a WASM program’s memory charge ink
before it is clear whether the operations will be successful or how much ink should really
be charged.

For example, in the read_return_data function, the user is charged for the operation to
write size bytes at the start of the host operation. However, the data to be written is the
returned data of size data.len(), which could actually be smaller than the originally
provided size. If data.len() is smaller than size, the user will be charged more ink than
they should be.

pub(crate) fn read_return_data<E: EvmApi>(
mut env: WasmEnvMut<E>,
dest: u32,
offset: u32,
size: u32,

) -> Result<u32, Escape> {
let mut env = WasmEnv::start(&mut env, EVM_API_INK)?;
env.pay_for_write(size.into())?;

let data = env.evm_api.get_return_data(offset, size);
assert!(data.len() <= size as usize);
env.write_slice(dest, &data)?;

let len = data.len() as u32;
trace!("read_return_data", env, [be!(dest), be!(offset)], data, len)

}

Figure 5.1: Ink is charged for writing size bytes, even though the data to be written could be
smaller than size. (arbitrator/stylus/src/host.rs#L273-L289)

Exploit Scenario
A WASM contract calls read_return_data, passing in a very large size parameter (100
MB). The EVM API, however, returns only 32 bytes, and the user is overcharged.

Trail of Bits 29 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/fc0a69d9a9e9fecfa7ae7ed028d16fc84b4ee62a/arbitrator/stylus/src/host.rs#L273-L289

Recommendations
Short term, modify the read_return_data function to require the user to have enough
ink available for writing size bytes but to charge ink for writing only data.len() bytes.
Make similar changes in all host operations that charge ink preemptively.

Long term, review the way ink is charged across different components and levels of
abstraction. Make sure it is consistent and follows how the EVM works. Document any
discrepancies in the charging of ink.

Trail of Bits 30 Arbitrum Stylus Security Assessment
PUBLIC

6. Integer overflow vulnerability in brotli-sys

Severity: Low Difficulty: High

Type: Patching Finding ID: TOB-STYLUS-6

Target: arbitrator

Description
Running cargo audit on the codebase reveals an integer overflow vulnerability in
brotli-sys, a dependency inherited in the Stylus repository. The dependency does not
currently have an update available to fix the vulnerability. Note, however, that the affected
functions are not used.

Dependencies should be kept up to date with any fixes to reduce the surface of potentially
exploitable code. If no fixes exist for vulnerabilities in dependencies, the relevant area of
the code should be clearly documented for developers, including explicit warnings about
the vulnerabilities, to ensure that new code does not use vulnerable dependency code.

Exploit Scenario
Alice, an Offchain Labs developer, adds new functionality to the system that uses the
brotli-sys streaming functions that are affected by the reported vulnerability,
introducing an exploitable integer overflow vulnerability into the codebase.

Recommendations
Short term, document the brotli-sys streaming functions that are affected by the
integer overflow vulnerability with clear warnings for future developers making changes in
the system.

Long term, add cargo audit to the continuous integration pipeline to ensure that new
vulnerabilities are caught quickly. Moreover, continue to monitor dependencies and update
them when new versions are available.

Trail of Bits 31 Arbitrum Stylus Security Assessment
PUBLIC

7. Reliance on outdated dependencies

Severity: Informational Difficulty: Undetermined

Type: Patching Finding ID: TOB-STYLUS-7

Target: arbitrator

Description
Updated versions of many dependencies of Arbitrum Stylus (and its submodules) are
available. Dependency maintainers commonly release updates that contain silent bug fixes,
so all dependencies should be periodically reviewed and updated wherever possible.

Dependencies that can be updated are listed in table 7.1, as reported by cargo upgrade
through the cargo upgrade --incompatible --dry-run command.

Dependency Version Used Latest Available Version

thiserror 1.0.33 1.0.49

libc 0.2.108 0.2.149

eyre 0.6.5 0.6.8

sha3 0.10.5 0.10.18

Table 7.1: Dependencies in the Stylus repository for which updates are available

Exploit Scenario
Eve learns of a vulnerability in an outdated version of a sha3 dependency. Knowing that
Stylus relies on the outdated version, she exploits the vulnerability.

Recommendations
Short term, update the dependencies to their latest versions wherever possible. Verify that
all unit tests pass following such updates. Document any reasons for not updating a
dependency.

Long term, add cargo upgrade --incompatible --dry-run into the continuous
integration pipeline to ensure that new vulnerabilities are caught quickly. Moreover,
continue to monitor dependencies and update them when new versions are available.

Trail of Bits 32 Arbitrum Stylus Security Assessment
PUBLIC

8. WASM validation relies on Wasmer code that could result in undefined
behavior

Severity: Medium Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STYLUS-8

Target: arbitrator/stylus/tools/wasmer/lib/types/src/vmoffsets.rs

Description
The use of Wasmer code for validating WASM binaries could result in undefined behavior.

Stylus uses Wasmer to perform a strict validation of WASM binaries before activating them.
For instance, the following function computes the memory offset for each WASM binary
component:

fn precompute(&mut self) {
/// Offset base by num_items items of size item_size, panicking on overflow
fn offset_by(base: u32, num_items: u32, item_size: u32) -> u32 {

base.checked_add(num_items.checked_mul(item_size).unwrap())
.unwrap()

}

self.vmctx_signature_ids_begin = 0;
self.vmctx_imported_functions_begin = offset_by(

self.vmctx_signature_ids_begin,
self.num_signature_ids,
u32::from(self.size_of_vmshared_signature_index()),

);
self.vmctx_imported_tables_begin = offset_by(

self.vmctx_imported_functions_begin,
self.num_imported_functions,
u32::from(self.size_of_vmfunction_import()),

);

Figure 8.1: The header of the precompute function in
lib/types/src/vmoffsets.rs#L282–309

However, this code relies on unsafe memory operations: it is not guaranteed that the
memory pointers are properly aligned, and these pointers can be dereferenced later.
Dereferencing of a misaligned memory pointer is undefined behavior (figure 8.2).

thread '<unnamed>' panicked at
/home/fuzz/projects/audit-stylus/arbitrator/tools/wasmer/lib/vm/src/instance/mod.rs:
163:18:

Trail of Bits 33 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/wasmer/blob/6b15433d83f951555c24f0c56dc05e4751b0cc76/lib/types/src/vmoffsets.rs#L282-L309

misaligned pointer dereference: address must be a multiple of 0x8 but is
0x51700005066c

Figure 8.2: Undefined behavior detected when trying to validate a WASM binary with a
misaligned memory pointer

A second, similar issue also exists in the version of Wasmer used by Stylus and can be
found by cargo-careful, by running cargo +nightly careful test.

Exploit Scenario
A user submits a WASM contract that triggers a dereference of a misaligned pointer, which
results in a crash or degraded performance.

Recommendations
Short term, modify the associated code to properly align the access pointers to ensure that
no undefined behavior is performed. Run related tests in debug mode in the CI pipeline.

Long term, perform fuzz testing of the validation, activation, and execution of WASM
contracts. Upgrade to the latest version of Wasmer, which contains fixes for these issues,
and integrate cargo-careful into the continuous integration pipeline.

Trail of Bits 34 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/wasmerio/wasmer/pull/4120
https://github.com/RalfJung/cargo-careful

9. Execution of natively compiled WASM code triggers ASan warning

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STYLUS-9

Target: arbitrator/tools/wasmer/lib/vm/src/libcalls.rs

Description
During the execution of natively compiled WASM code, certain code that handles
exceptions could produce false positives in the AddressSanitizer (ASan) checks.

Stylus allows users to compile WASM programs into native code and execute it, using
Wasmer. While the produced native code looks correct, it seems to be incompatible with
certain ASan checks on stack memory:

==1584753==WARNING: ASan is ignoring requested __asan_handle_no_return: stack type:
default top: 0x7ffff106a000; bottom 0x7f7d88545000; size: 0x008268b25000
(560102264832)
False positive error reports may follow
For details see https://github.com/google/sanitizers/issues/189
===
==1584753==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7f7d88546ab0
at pc 0x558196e7d273 bp 0x7f7d88546a90 sp 0x7f7d88546260
WRITE of size 24 at 0x7f7d88546ab0 thread T0

#0 0x558196e7d272 in sigaltstack
/rustc/llvm/src/llvm-project/compiler-rt/lib/asan/../sanitizer_common/sanitizer_comm
on_interceptors.inc:10100:5

#1 0x558196eaa3ef in __asan::PlatformUnpoisonStacks()
/rustc/llvm/src/llvm-project/compiler-rt/lib/asan/asan_posix.cpp:45:3

#2 0x558196eb0417 in __asan_handle_no_return
/rustc/llvm/src/llvm-project/compiler-rt/lib/asan/asan_rtl.cpp:589:8

#3 0x55819b933581 in
wasmer_vm::trap::traphandlers::raise_lib_trap::h08f8319f19014fcd
/home/fuzz/projects/audit-stylus/arbitrator/tools/wasmer/lib/vm/src/trap/traphandler
s.rs:582:5

#4 0x55819b94b2c8 in wasmer_vm_memory32_fill
/home/fuzz/projects/audit-stylus/arbitrator/tools/wasmer/lib/vm/src/libcalls.rs:584:
9

#5 0x7f7f1a400202 (<unknown module>)
#6 0x7f7f1a40029b (<unknown module>)

Address 0x7f7d88546ab0 is a wild pointer inside of access range of size
0x000000000018.
SUMMARY: AddressSanitizer: stack-buffer-overflow
/rustc/llvm/src/llvm-project/compiler-rt/lib/asan/../sanitizer_common/sanitizer_comm
on_interceptors.inc:10100:5 in sigaltstack

Trail of Bits 35 Arbitrum Stylus Security Assessment
PUBLIC

Shadow bytes around the buggy address:
0x7f7d88546800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x7f7d88546880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x7f7d88546900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x7f7d88546980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x7f7d88546a00: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 00

=>0x7f7d88546a80: 00 00 00 f3 f3 f3[f3]f3 00 00 00 00 00 00 00 00
…

Figure 9.1: The header of the ASan warning

While we do not see an immediate risk, the resulting code should be compatible with ASan
to make sure the execution of native code can be analyzed.

Recommendations
Investigate the reason for the ASan warning. We were unable to find a recommendation for
this issue before the end of the engagement.

Trail of Bits 36 Arbitrum Stylus Security Assessment
PUBLIC

10. Unclear program version checks

Severity: Informational Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-STYLUS-10

Target: arbos/programs/programs.go

Description
When a program is activated, the current Stylus version of the chain is used to compile and
instrument the program. If activation is successful, the program state is updated to reflect
that version (figure 10.1).

programData := Program{
wasmSize: wasmSize,
footprint: info.footprint,
version: version,

}
return version, false, p.programs.Set(codeHash, programData.serialize())

Figure 10.1: The program version is set in ActivateProgram.
(arbos/programs/programs.go#L210-L215)

Additionally, as shown in figure 10.2, programs may be reactivated to update the version
after Stylus updates; this is useful as instrumentation may change between versions.

func (p Programs) ActivateProgram(evm *vm.EVM, program common.Address, debugMode
bool) (uint16, bool, error) {

statedb := evm.StateDB
codeHash := statedb.GetCodeHash(program)

version, err := p.StylusVersion()
if err != nil {

return 0, false, err
}
latest, err := p.CodehashVersion(codeHash)
if err != nil {

return 0, false, err
}
// Already compiled and found in the machine versions mapping.
if latest >= version {

return 0, false, ProgramUpToDateError()
}

// ...
}

Trail of Bits 37 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/fc0a69d9a9e9fecfa7ae7ed028d16fc84b4ee62a/arbos/programs/programs.go#L210-L215

Figure 10.2: The program version check in ActivateProgram
(arbos/programs/programs.go#L169-L184)

However, the check in figure 10.2 (if latest >= version) implies that a program could
have been activated using a Stylus version higher than the current one, which could be the
case if the chain’s Stylus version is reverted to a previous one after a program is activated;
in that case, this check would prevent that program from being reactivated and updated
with the current Stylus version.

This behavior in of itself does not necessarily have to be a problem; however, as shown in
figure 10.3, a program can be called through the callProgram function only when the
program’s activation version matches the current Stylus version of the chain, which further
contradicts the check performed by the activation function.

if program.version != stylusVersion {
return nil, ProgramOutOfDateError(program.version)

}

Figure 10.3: The program activation version is checked in callProgram.
(arbos/programs/programs.go#L240-L242)

Recommendations
Short term, consider whether reactivation of a program should be allowed only when the
program’s activation version is different from the current Stylus version. This would allow
reactivation exclusively when there is a version change; however, note that this might be
undesired behavior and should therefore be thoroughly studied.

Long term, document the intended flow for program reactivation under a Stylus version
change and consider issues and edge cases that could arise when old programs are
reactivated with a different set of instrumentations.

Trail of Bits 38 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/fc0a69d9a9e9fecfa7ae7ed028d16fc84b4ee62a/arbos/programs/programs.go#L169-L184
https://github.com/OffchainLabs/stylus/blob/fc0a69d9a9e9fecfa7ae7ed028d16fc84b4ee62a/arbos/programs/programs.go#L240-L242

11. Memory leak in capture_hostio

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STYLUS-11

Target: stylus/arbitrator/stylus/src/evm_api.rs

Description
In the capture_hostio function, the RustBytes function new calls mem::forget, but the
allocation is never freed, leaking memory. This may cause excess resource consumption;
however, this code appears to be used only when tracing is enabled (presumably in debug
mode).

fn capture_hostio(&self, name: &str, args: &[u8], outs: &[u8], start_ink: u64,
end_ink: u64) {

call!(
self,
capture_hostio,
ptr!(RustBytes::new(name.as_bytes().to_vec())),
ptr!(RustSlice::new(args)),
ptr!(RustSlice::new(outs)),
start_ink,
end_ink

)
}

Figure 11.1: The capture_hostio function leaks memory.
(stylus/arbitrator/stylus/src/evm_api.rs#263–273)

Recommendations
Short term, have the code explicitly drop RustBytes. Alternatively, use RustSlice, which
rustc will automatically free.

Long term, monitor the resource consumption of nodes. For memory managed purely in
Rust, run the tests with cargo miri.

Trail of Bits 39 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/0509a98f4ec88d34b4ae2d65ec74ed490a414388/arbitrator/stylus/src/evm_api.rs#L263-L273
https://github.com/rust-lang/miri

12. Use of mem::forget for FFI is error-prone

Severity: Undetermined Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STYLUS-12

Target: stylus/arbitrator/prover/src/lib.rs,
stylus/arbitrator/stylus/src/lib.rs

Description
The documentation for std::mem::forget states that using it to transfer memory
ownership across FFI boundaries is error-prone. Specifically, modifications that introduce
panics into code that uses std::mem::forget, such as the code shown in figures 12.1 and
12.2, may cause double frees, and using a value after calling as_mut_ptr and transferring
ownership of the memory is invalid. The documentation advises developers to use
ManuallyDrop instead.

pub unsafe extern "C" fn arbitrator_gen_proof(mach: *mut Machine) -> RustByteArray {
let mut proof = (*mach).serialize_proof();
let ret = RustByteArray {

ptr: proof.as_mut_ptr(),
len: proof.len(),
capacity: proof.capacity(),

};
std::mem::forget(proof);
ret

}

Figure 12.1: The ownership of proof’s memory is transferred to ret.
(stylus/arbitrator/prover/src/lib.rs#368–377)

unsafe fn write(&mut self, mut vec: Vec<u8>) {
self.ptr = vec.as_mut_ptr();
self.len = vec.len();
self.cap = vec.capacity();
mem::forget(vec);

}

Figure 12.2: The ownership of vec’s memory is transferred to self.
(stylus/arbitrator/stylus/src/lib.rs#84–89)

Recommendations
Short term, use ManuallyDrop instead of std::mem::forget in the aforementioned
code to more robustly manage memory manually.

Trail of Bits 40 Arbitrum Stylus Security Assessment
PUBLIC

https://doc.rust-lang.org/std/mem/fn.forget.html#relationship-with-manuallydrop
https://doc.rust-lang.org/std/mem/fn.forget.html#relationship-with-manuallydrop
https://github.com/OffchainLabs/stylus/blob/0509a98f4ec88d34b4ae2d65ec74ed490a414388/arbitrator/prover/src/lib.rs#L368-L377
https://github.com/OffchainLabs/stylus/blob/0509a98f4ec88d34b4ae2d65ec74ed490a414388/arbitrator/stylus/src/lib.rs#L84-L89
https://doc.rust-lang.org/std/mem/fn.forget.html#relationship-with-manuallydrop

Long term, follow best practices outlined in Rust’s stdlib and test the code thoroughly for
leaks and memory corruption.

Trail of Bits 41 Arbitrum Stylus Security Assessment
PUBLIC

13. Lack of safety documentation for unsafe Rust

Severity: Informational Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-STYLUS-13

Target: arbos/programs/programs.go

Description
The Rust codebase’s unsafe blocks lack safety comments explaining their invariants and
sound usage. Furthermore, safe code and unsafe code are mixed in functions declared
unsafe without distinguishing which blocks of code are unsafe. In future versions of Rust,
this pattern may be flagged as a warning or even a hard error. Generally, the code would
be less ambiguous if unsafe code were explicitly separated into dedicated blocks even if the
overall function scope is unsafe.

The following output of running clippy -- -D clippy::undocumented_unsafe_blocks
shows the unsafe Rust blocks in Stylus that lack documentation on their safety
assumptions.

...
error: unsafe block missing a safety comment
--> tools/wasmer/lib/types/src/value.rs:32:29
|

32 | .field("bytes", unsafe { &self.bytes })
| ^^^^^^^^^^^^^^^^^^^^^^
|
= help: consider adding a safety comment on the preceding line
= help: for further information visit

https://rust-lang.github.io/rust-clippy/master/index.html#undocumented_unsafe_blocks

error: unsafe block missing a safety comment
--> tools/wasmer/lib/types/src/value.rs:41:17
|

41 | unsafe { self.$f == *o }
| ^^^^^^^^^^^^^^^^^^^^^^^^

...

Figure 13.1: Output of the Clippy linter

Unsafe Rust blocks should always contain safety comments explaining why the unsafe Rust
is sound and does not exhibit undefined behavior.

Even if the code is not currently being used in a way that creates undefined behavior, the
current Stylus APIs can be used in an unsound manner. Consider the following example:

Trail of Bits 42 Arbitrum Stylus Security Assessment
PUBLIC

https://rust-lang.github.io/rfcs/2585-unsafe-block-in-unsafe-fn.html

let x = vec![1u8; 1000];
let y = GoSliceData{

ptr: x.as_ptr(),
len: 1000

};
let mut a = RustBytes::new(x);
unsafe {

stylus_vec_set_bytes(&mut a as *mut RustBytes, y);
}

Figure 13.2: Example code allowing unsafe behavior

Miri (a tool for detecting undefined behavior) issues a warning on the code in figure 13.2:

Undefined Behavior: deallocating while item [SharedReadOnly for <1851>] is strongly
protected by call 812

Figure 13.3: Miri’s output when run on the code in figure 13.2

The stylus_vec_set_bytes function does not contain sufficient documentation that
covers this possible unsafe use.

///
/// # Safety
///
/// `rust` must not be null.
#[no_mangle]
pub unsafe extern "C" fn stylus_vec_set_bytes(rust: *mut RustBytes, data:
GoSliceData) {

let rust = &mut *rust;
let mut vec = Vec::from_raw_parts(rust.ptr, rust.len, rust.cap);
vec.clear();
vec.extend(data.slice());
rust.write(vec);

}

Figure 13.4: The stylus_vec_set_bytes function
(stylus/arbitrator/stylus/src/lib.rs#201–213)

The unsafe write function also lacks documentation highlighting its possible misuse:

unsafe fn write(&mut self, mut vec: Vec<u8>) {
self.ptr = vec.as_mut_ptr();
self.len = vec.len();
self.cap = vec.capacity();
mem::forget(vec);

}

Figure 13.5: The unsafe write function (stylus/arbitrator/stylus/src/lib.rs#84–89)

The write function will leak memory if called consecutively without explicitly freeing vec,
such as by using stylus_vec_set_bytes (figure 13.6), but this is undocumented.

Trail of Bits 43 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/rust-lang/miri
https://github.com/OffchainLabs/stylus/blob/aa636dcb58087b8cab5251fdb4166eefa63b0a16/arbitrator/stylus/src/lib.rs#L201-L213
https://github.com/OffchainLabs/stylus/blob/0509a98f4ec88d34b4ae2d65ec74ed490a414388/arbitrator/stylus/src/lib.rs#L84-L89

let one = vec![];
let mut two = RustBytes::new(one);
unsafe {

two.write(vec![1u8; 1000]);
two.write(vec![1u8; 1000]);

}

Figure 13.6: An example of how write could be misused

For functions that are called via Cgo, we recommend documenting where memory is
allocated and whether the caller is responsible for manually freeing the memory or, in the
case of Go, whether it will be garbage collected.

Recommendations
Short term, set the undocumented_unsafe_blocks, unsafe_op_in_unsafe_fn, and
missing_safety_doc lints to deny.

Long term, ensure that any implicit assumptions are documented in the code so that they
are not forgotten.

Trail of Bits 44 Arbitrum Stylus Security Assessment
PUBLIC

14. Undefined behavior when passing padded struct via FFI

Severity: Undetermined Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-STYLUS-14

Target: wasmer/lib/vm/src/vmcontext.rs

Description
Union types used in Wasmer that cross FFI boundaries and unconditionally transmute
between instances of vmctx and host_env are not derived from repr(C), which could
lead to undefined behavior due to inconsistent padding. An example is shown in figures
14.1 and 14.2.

Types that cross FFI boundaries should be derived from repr(C) so that “the order, size,
and alignment of fields is exactly what you would expect from C or C++,” as documented in
the Rustonomicon.

#[derive(Copy, Clone, Eq)]
pub union VMFunctionContext {

/// Wasm functions take a pointer to [`VMContext`].
pub vmctx: *mut VMContext,
/// Host functions can have custom environments.
pub host_env: *mut std::ffi::c_void,

}

impl VMFunctionContext {
/// Check whether the pointer stored is null or not.
pub fn is_null(&self) -> bool {

unsafe { self.host_env.is_null() }
}

}

Figure 14.1: A union that is used across FFI boundaries
(wasmer/lib/vm/src/vmcontext.rs#25–38)

/// Call the wasm function pointed to by `callee`.
///
/// * `vmctx` - the callee vmctx argument
/// * `caller_vmctx` - the caller vmctx argument
/// * `trampoline` - the jit-generated trampoline whose ABI takes 4 values, the
/// callee vmctx, the caller vmctx, the `callee` argument below, and then the
/// `values_vec` argument.
/// * `callee` - the third argument to the `trampoline` function
/// * `values_vec` - points to a buffer which holds the incoming arguments, and to
/// which the outgoing return values will be written.

Trail of Bits 45 Arbitrum Stylus Security Assessment
PUBLIC

https://rust-lang.github.io/rust-clippy/master/index.html#/default_union_representation
https://doc.rust-lang.org/nomicon/other-reprs.html#reprc
https://github.com/wasmerio/wasmer/blob/d18aa794978e6b951e36632e29e58f4ef7e0da03/lib/vm/src/vmcontext.rs#L25-L38

///
/// # Safety
///
/// Wildly unsafe because it calls raw function pointers and reads/writes raw
/// function pointers.
pub unsafe fn wasmer_call_trampoline(

trap_handler: Option<*const TrapHandlerFn<'static>>,
config: &VMConfig,
vmctx: VMFunctionContext,
trampoline: VMTrampoline,
callee: *const VMFunctionBody,
values_vec: *mut u8,

) -> Result<(), Trap> {
catch_traps(trap_handler, config, || {

mem::transmute::<_, extern "C" fn(VMFunctionContext, *const VMFunctionBody,
*mut u8)>(

trampoline,
)(vmctx, callee, values_vec);

})
}

Figure 14.2: A call to a foreign interface with the union shown in figure 14.1
(wasmer/lib/vm/src/trap/traphandlers.rs#642–670)

Recommendations
Short term, derive types that cross FFI boundaries from repr(C).

Long term, enable Clippy’s default_union_representation lint and integrate cargo
miri into the testing of Wasmer.

Trail of Bits 46 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/wasmerio/wasmer/blob/d18aa794978e6b951e36632e29e58f4ef7e0da03/lib/vm/src/trap/traphandlers.rs#L642-L670

15. Stylus’s 63/64th gas forwarding di�ers from go-ethereum

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STYLUS-15

Target: audit-stylus/arbos/programs/api.go,
audit-stylus/arbitrator/stylus/src/host.rs

Description
The Stylus VM deviates from the Ethereum specification and the behavior of the reference
implementation in its application of the 63/64th gas forwarding rule, defined in EIP-150.

EIP-150 states that “if a call asks for more gas than all but one 64th of the maximum
allowed amount, call with all but one 64th of the maximum allowed amount of gas.”

The Go implementation of the Ethereum protocol calculates the “all but one 64th” amount
in the callGas function. The new rule is applied only when the requested amount of gas
exceeds the allowed gas computed using the rule.

evm.callGasTemp, err = callGas(evm.chainRules.IsEIP150, contract.Gas, gas,
stack.Back(0))

Figure 15.1: go-ethereum’s calculation for gas available in CALL
(go-ethereum/core/vm/gas_table.go#391)

func callGas(isEip150 bool, availableGas, base uint64, callCost *uint256.Int)
(uint64, error) {

if isEip150 {
availableGas = availableGas - base
gas := availableGas - availableGas/64
// If the bit length exceeds 64 bit we know that the newly calculated

"gas" for EIP150
// is smaller than the requested amount. Therefore we return the new

gas instead
// of returning an error.
if !callCost.IsUint64() || gas < callCost.Uint64() {

return gas, nil
}

}
if !callCost.IsUint64() {

return 0, ErrGasUintOverflow
}

return callCost.Uint64(), nil

Trail of Bits 47 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/go-ethereum/blob/5fb8ebc9ecb226b84181420b9871c5f61cf4f77d/core/vm/gas_table.go#L391

}

Figure 15.2: An application of 63/64th rule (go-ethereum/core/vm/gas.go#37–53)

On the other hand, Stylus applies the 63/64th rule indiscriminately using the minimum
value of the requested gas amount and the gas available to the parent call. The 63/64th
rule should be applied only if the call requests more than “all but one 64th” of the gas.

gas = gas.min(env.gas_left()?); // provide no more than what the user has

let contract = env.read_bytes20(contract)?;
let input = env.read_slice(calldata, calldata_len)?;
let value = value.map(|x| env.read_bytes32(x)).transpose()?;
let api = &mut env.evm_api;

let (outs_len, gas_cost, status) = call(api, contract, &input, gas, value);

Figure 15.3: Stylus’s calculation for gas available in CALL
(arbitrator/stylus/src/host.rs#153–160)

startGas := gas

// computes makeCallVariantGasCallEIP2929 and gasCall/gasDelegateCall/gasStaticCall
baseCost, err := vm.WasmCallCost(db, contract, value, startGas)
if err != nil {

return 0, gas, err
}
gas -= baseCost

// apply the 63/64ths rule
one64th := gas / 64
gas -= one64th

Figure 15.4: Stylus’s incorrect application of the 63/64th rule
(arbos/programs/api.go#114–125)

Recommendations
Short term, have the code pass all but one 64th of the available gas only if a call requests
more than the maximum allowed gas.

Long term, develop machine-readable tests for the Stylus VM that include the expected gas
consumption, similar to Ethereum’s reference tests.

Trail of Bits 48 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/ethereum/go-ethereum/blob/5fb8ebc9ecb226b84181420b9871c5f61cf4f77d/core/vm/gas.go#L37-L53
https://github.com/offchainLabs/stylus/blob/fc0a69d9a9e9fecfa7ae7ed028d16fc84b4ee62a/arbitrator/stylus/src/host.rs#L153-L160
https://github.com/offchainLabs/stylus/blob/fc0a69d9a9e9fecfa7ae7ed028d16fc84b4ee62a/arbos/programs/api.go#L114-L125
https://github.com/ethereum/tests

16. Undocumented WASM/WAVM limits

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STYLUS-16

Target: arbitrator/prover/src/programs/mod.rs

Description
When a user WASM program is parsed, certain limits are enforced in the program (figure
19.1). These limits are undocumented, so they might be unexpected for users.

Additionally, while those limits serve as protection against denial of service and extra
checks for bugs, not all of the WASM binary fields are explicitly limited. For example, the
number of imports (the imports field) is not checked, yet this number is constrained by
the imports available to the implementation (VM, host modules, etc.).

pub fn parse_user(wasm: &'a [u8], page_limit: u16, compile: &CompileConfig) ->
Result<(WasmBinary<'a>, StylusData, u16)> {

// ...
// ensure the wasm fits within the remaining amount of memory
if pages > page_limit.into() {

let limit = page_limit.red();
bail!("memory exceeds limit: {} > {limit}", pages.red());

}

// not strictly necessary, but anti-DoS limits and extra checks in case of bugs
macro_rules! limit { ... }
limit!(1, bin.memories.len(), "memories");
limit!(100, bin.datas.len(), "datas");
limit!(100, bin.elements.len(), "elements");
limit!(1_000, bin.exports.len(), "exports");
limit!(1_000, bin.tables.len(), "tables");
limit!(10_000, bin.codes.len(), "functions");
limit!(50_000, bin.globals.len(), "globals");
for function in &bin.codes {

limit!(4096, function.locals.len(), "locals")
}

let table_entries = bin.tables.iter().map(|x| x.initial).saturating_sum();
limit!(10_000, table_entries, "table entries");

let max_len = 500;
macro_rules! too_long { ... }
if let Some((name, _)) = bin.exports.iter().find(|(name, _)| name.len() >

max_len) {

Trail of Bits 49 Arbitrum Stylus Security Assessment
PUBLIC

too_long!("name", name.len())
}
if bin.names.module.len() > max_len {

too_long!("module name", bin.names.module.len())
}
if bin.start.is_some() {

bail!("wasm start functions not allowed");
}

Figure 16.1: Limits enforced in parse_user
(arbitrator/prover/src/binary.rs#L585-L648)

Recommendation
Short term, document the limits enforced on parsed WASM programs along with an
explanation of how those limits were chosen. Also, consider whether limits for currently
unchecked fields such as imports should be set.

Long term, benchmark the chosen limits to make sure they do not allow for any
denial-of-service scenario.

Trail of Bits 50 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/051ee03846f1bd9804e3e1ab838c2b1a1d65e9d7/arbitrator/prover/src/binary.rs#L585-L648

17. Missing sanity checks for argumentData instruction

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STYLUS-17

Target: stylus-contracts/src/osp/OneStepProver0.sol

Description
The argumentData instruction is missing sanity checks in certain cases.

In most cases, argumentData is checked to ensure it does not contain any unexpected and
unwanted bits, as is done in the executeCrossModuleCall function.

// Jump to the target
uint32 func = uint32(inst.argumentData);
uint32 module = uint32(inst.argumentData >> 32);
require(inst.argumentData >> 64 == 0, "BAD_CROSS_MODULE_CALL_DATA");

Figure 17.1: A check for unexpected higher bits
(stylus-contracts/src/osp/OneStepProver0.sol#158–161)

However, in some cases, such as in the executeCrossModuleInternalCall function
(figure 17.2), argumentData is simply truncated or unchecked.

uint32 internalIndex = uint32(inst.argumentData);
uint32 moduleIndex = mach.valueStack.pop().assumeI32();
Module memory calledMod;

Figure 17.2: The argumentData instruction is truncated.
(stylus-contracts/src/osp/OneStepProver0.sol#174–176)

Additionally, the executeConstPush function does not check argumentData for set
upper bits when its value is an I32.

function executeConstPush(
Machine memory mach,
Module memory,
Instruction calldata inst,
bytes calldata

) internal pure {
uint16 opcode = inst.opcode;
ValueType ty;
if (opcode == Instructions.I32_CONST) {

ty = ValueType.I32;

Trail of Bits 51 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/0f0a59f8b33294abbcdf90375641593b0eef3f3d/src/osp/OneStepProver0.sol#L136C1-L138C77
https://github.com/OffchainLabs/stylus-contracts/blob/0f0a59f8b33294abbcdf90375641593b0eef3f3d/src/osp/OneStepProver0.sol#L174-L176

} else if (opcode == Instructions.I64_CONST) {
ty = ValueType.I64;

} else if (opcode == Instructions.F32_CONST) {
ty = ValueType.F32;

} else if (opcode == Instructions.F64_CONST) {
ty = ValueType.F64;

} else {
revert("CONST_PUSH_INVALID_OPCODE");

}

mach.valueStack.push(Value({valueType: ty, contents:
uint64(inst.argumentData)}));
}

Figure 17.3: The executeConstPush function pushes 64 bits of argumentData to the value
stack. (stylus-contracts/src/osp/OneStepProver0.sol#38–59)

However, this case would mean that incorrectly parsed WASM code is being executed,
which is unlikely.

Recommendation
Short term, include the missing sanity checks for argumentData to ensure the upper bits
are not set for small value types. Add these checks in all instances mentioned in the finding
as well as any others that are identified.

Long term, consider adding more sanity checks in areas of the code where the security of
many parts relies on one assumption.

Trail of Bits 52 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/0f0a59f8b33294abbcdf90375641593b0eef3f3d/src/osp/OneStepProver0.sol#L38-L59

18. Discrepancy in EIP-2200 implementation

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STYLUS-18

Target: stylus/go-ethereum/core/vm/operations_acl_arbitrum.go

Description
The WasmStateStoreCost function, which is an adaptation of go-ethereum’s
makeGasSStoreFunc function, introduces a discrepancy from the original code (and a
deviation from the EIP-2200 specification) when performing EIP-2200’s “stipend check.”

In particular, as shown in figure 18.2, the “stipend check” is performed in the original code
as a “less than or equal to” comparison.

func makeGasSStoreFunc(clearingRefund uint64) gasFunc {
return func(evm *EVM, contract *Contract, stack *Stack, mem *Memory,

memorySize uint64) (uint64, error) {
// If we fail the minimum gas availability invariant, fail (0)
if contract.Gas <= params.SstoreSentryGasEIP2200 {

return 0, errors.New("not enough gas for reentrancy sentry")
}

Figure 18.2: The original go-ethereum code
(go-ethereum/core/vm/operations_acl.go#L27-L30)

In Stylus’s version of the code, the stipend check is meant to be performed by the caller of
the function.

// Computes the cost of doing a state store in wasm
// Note: the code here is adapted from makeGasSStoreFunc with the most recent
parameters as of The Merge
// Note: the sentry check must be done by the caller
func WasmStateStoreCost(db StateDB, program common.Address, key, value common.Hash)
uint64 {

Figure 18.2: The adapted go-ethereum code in Stylus
(stylus/go-ethereum/core/vm/operations_acl_arbitrum.go#L40–L43)

For example, the check is handled in the user_host__storage_store_bytes32 function
as part of the host operations (figure 18.3).

pub unsafe extern "C" fn user_host__storage_store_bytes32(key: usize, value: usize)
{

Trail of Bits 53 Arbitrum Stylus Security Assessment
PUBLIC

http://go-ethereum/blob/577be37e0e7a69564224e0a15e49d648ed461ac5/core/vm/operations_acl.go#L27-L30
https://github.com/OffchainLabs/stylus-contracts/blob/0f0a59f8b33294abbcdf90375641593b0eef3f3d/src/osp/OneStepProver0.sol#L158-L161

let program = Program::start(2 * PTR_INK + EVM_API_INK);
program.require_gas(evm::SSTORE_SENTRY_GAS).unwrap();
[...]

}

Figure 18.3: The EIP-2200 “stipend check” performed by the caller
(arbitrator/wasm-libraries/user-host/src/host.rs#L38-L40)

However, the check is performed as a strictly “less than” comparison, thereby introducing a
discrepancy from EIP-2200 and from the code being adapted (note that require_gas calls
require_ink).

fn require_ink(&mut self, ink: u64) -> Result<(), OutOfInkError> {
let ink_left = self.ink_ready()?;
if ink_left < ink {

return self.out_of_ink();
}
Ok(())

}

Figure 18.4: The ”stipend check” implementation
(arbitrator/prover/src/programs/meter.rs)

Note that in this particular case, the deviation does not lead to any security issues.

This discrepancy also appears in the storage_store_bytes32 function.

Recommendation
Short term, modify the two affected functions so that they perform the stipend check using
a “less than or equal to” comparison, per the EIP-2200 specification.

Long term, whenever code is being adapted from a different source, thoroughly document
any expected deviations; additionally, adapt the original tests, which can help identify any
expected deviations.

Trail of Bits 54 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/0f0a59f8b33294abbcdf90375641593b0eef3f3d/src/osp/OneStepProver0.sol#L158-L161
https://github.com/OffchainLabs/stylus/blob/d40815448831dcfcc5556e56f693ca160a032bf5/arbitrator/prover/src/programs/meter.rs#L269-L276

19. Tests missing assertions for some errors and values

Severity: Low Difficulty: High

Type: Error Reporting Finding ID: TOB-STYLUS-19

Target: stylus/arbitrator/prover/src/binary.rs

Description
Many of the tests in the codebase perform incomplete assertions, which may prevent the
tests from detecting bugs in the event of future code changes. In particular, some tests
check only the following:

● Whether an error was returned, but not the type or the message of the error

● Whether the resulting structure’s field values are as expected

Additionally, the tests do not test all edge cases. For example, there are no unit tests that
ensure that the enforced WASM limits (mentioned in TOB-STYLUS-16) actually work.

Those issues can be seen, for example, in the prover’s tests, as shown in figure 19.1.

#[test]
pub fn reject_reexports() {

let wasm = as_wasm(...);
let _ = binary::parse(&wasm, Path::new("")).unwrap_err();

let wasm = as_wasm(...);
let _ = binary::parse(&wasm, Path::new("")).unwrap_err();

}

#[test]
pub fn reject_ambiguous_imports() {

let wasm = as_wasm(...);
let _ = binary::parse(&wasm, Path::new("")).unwrap();

let wasm = as_wasm(...);
let _ = binary::parse(&wasm, Path::new("")).unwrap_err();

}

Figure 19.1: stylus/arbitrator/prover/src/test.rs#L14-L54

Recommendations
Short term, apply the patch provided in appendix E to improve the quality of the tests.

Trail of Bits 55 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/051ee03846f1bd9804e3e1ab838c2b1a1d65e9d7/arbitrator/prover/src/test.rs#L14-L54

Long term, further refactor the tests to ensure they include assertions for all expected
states of values or errors that are returned from the tested functions.

Trail of Bits 56 Arbitrum Stylus Security Assessment
PUBLIC

20. Machine state serialization/deserialization does not account for error
guards

Severity: Low Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-STYLUS-20

Target: stylus/arbitrator/prover/src/machine.rs

Description
The code for serialization and deserialization of the machine state does not account for any
error guards (figure 20.1). If any error guards are present, they could produce an invalid
machine state when the prover is run from a deserialized state.

pub fn serialize_state<P: AsRef<Path>>(&self, path: P) -> Result<()> {
let mut f = File::create(path)?;
let mut writer = BufWriter::new(&mut f);
let modules = self

.modules

.iter()

.map(|m| ModuleState {
globals: Cow::Borrowed(&m.globals),
memory: Cow::Borrowed(&m.memory),

})
.collect();

let state = MachineState {
steps: self.steps,
status: self.status,
value_stack: Cow::Borrowed(&self.value_stack),
internal_stack: Cow::Borrowed(&self.internal_stack),
frame_stack: Cow::Borrowed(&self.frame_stack),
modules,
global_state: self.global_state.clone(),
pc: self.pc,
stdio_output: Cow::Borrowed(&self.stdio_output),
initial_hash: self.initial_hash,

};
bincode::serialize_into(&mut writer, &state)?;
writer.flush()?;
drop(writer);
f.sync_data()?;
Ok(())

}

// Requires that this is the same base machine. If this returns an error, it has not
mutated `self`.

Trail of Bits 57 Arbitrum Stylus Security Assessment
PUBLIC

pub fn deserialize_and_replace_state<P: AsRef<Path>>(&mut self, path: P) ->
Result<()> {

let reader = BufReader::new(File::open(path)?);
let new_state: MachineState = bincode::deserialize_from(reader)?;
if self.initial_hash != new_state.initial_hash {

bail!(
"attempted to load deserialize machine with initial hash {} into machine

with initial hash {}",
new_state.initial_hash, self.initial_hash,

);
}
assert_eq!(self.modules.len(), new_state.modules.len());

// Start mutating the machine. We must not return an error past this point.
for (module, new_module_state) in

self.modules.iter_mut().zip(new_state.modules.into_iter())
{

module.globals = new_module_state.globals.into_owned();
module.memory = new_module_state.memory.into_owned();

}
self.steps = new_state.steps;
self.status = new_state.status;
self.value_stack = new_state.value_stack.into_owned();
self.internal_stack = new_state.internal_stack.into_owned();
self.frame_stack = new_state.frame_stack.into_owned();
self.global_state = new_state.global_state;
self.pc = new_state.pc;
self.stdio_output = new_state.stdio_output.into_owned();
Ok(())

}

Figure 20.1: Machine state serialization and deserialization code
(stylus/arbitrator/prover/src/machine.rs#L1430-L1488)

When a machine state is serialized and later deserialized—as is the case when
CreateValidationNode is run (figure 20.2)—the information about any error guards is
lost.

func CreateValidationNode(configFetcher ValidationConfigFetcher, stack *node.Node,
fatalErrChan chan error) (*ValidationNode, error) {

Figure 20.2: The CreateValidationNode function
(stylus/validator/valnode/valnode.go#L87)

This would result in a mismatch between the actual machine state and that which starts
from a serialized state.

Exploit Scenario
Alice creates a validation node from a serialized machine state. Because the error guards
were not included during serialization, the correct execution of the machine is now
undetermined.

Trail of Bits 58 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/d40815448831dcfcc5556e56f693ca160a032bf5/arbitrator/prover/src/machine.rs#L1430-L1488
https://github.com/OffchainLabs/stylus/blob/9e9dd98238952b7196e303fb919348b41cfa104e/validator/valnode/valnode.go#L87

Recommendation
Short term, include ErrorGuardStack (machine.guards) as part of the machine state
serialization and deserialization process.

Long term, when introducing new features, keep in mind all of the areas that might be
affected by them and ensure there is sufficient test coverage.

Trail of Bits 59 Arbitrum Stylus Security Assessment
PUBLIC

21. Lack of minimum-value check for program activation

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-21

Target: stylus/precompiles/ArbWasm.go

Description
The cost for activating WASM programs is paid in native currency instead of gas. However,
there is no check of the supplied native currency at the start of the program activation
code. This is presumably because the cost is not known up front; nonetheless, a simple
zero-value or minimum-value check could prevent the need to perform unnecessary
computation if the user supplies insufficient value.

// Compile a wasm program with the latest instrumentation
func (con ArbWasm) ActivateProgram(c ctx, evm mech, value huge, program addr)
(uint16, error) {

debug := evm.ChainConfig().DebugMode()

// charge a fixed cost up front to begin activation
if err := c.Burn(1659168); err != nil {

return 0, err
}
version, codeHash, moduleHash, dataFee, takeAllGas, err :=

c.State.Programs().ActivateProgram(evm, program, debug)
if takeAllGas {

_ = c.BurnOut()
}
if err != nil {

return version, err
}
if err := con.payActivationDataFee(c, evm, value, dataFee); err != nil {

return version, err
}
return version, con.ProgramActivated(c, evm, codeHash, moduleHash, program,

version)
}

Figure 21.1: WASM program activation code (stylus/precompiles/ArbWasm.go#L24-L43)

Recommendation
Short term, include a zero-value or minimum-value check at the start of the program
activation code.

Trail of Bits 60 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/135fee7a88a2da36dab6c02db321a1653e77f475/precompiles/ArbWasm.go#L24-L43

Long term, review the codebase to identify any other possibly unnecessary computations
that could be avoided by checks made in advance.

Trail of Bits 61 Arbitrum Stylus Security Assessment
PUBLIC

22. SetWasmKeepaliveDays sets ExpiryDays instead of KeepaliveDays

Severity: Medium Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STYLUS-22

Target: stylus/precompiles/ArbOwner.go

Description
The SetWasmKeepaliveDays function sets the ExpiryDays value instead of the
KeepaliveDays value, making admins unable to set the KeepaliveDays value from the
Go side.

// Sets the number of days after which programs deactivate
func (con ArbOwner) SetWasmExpiryDays(c ctx, _ mech, days uint16) error {

return c.State.Programs().SetExpiryDays(days)
}

// Sets the age a program must be to perform a keepalive
func (con ArbOwner) SetWasmKeepaliveDays(c ctx, _ mech, days uint16) error {

return c.State.Programs().SetExpiryDays(days)
}

Figure 22.1: stylus/precompiles/ArbOwner.go#L200–L208

Exploit Scenario
An admin makes a call to SetWasmKeepaliveDays with the intention of extending the life
of some programs; however, they inadvertently expire all programs, as the function
incorrectly sets ExpiryDays.

Recommendations
Short term, fix the SetWasmKeepaliveDays function to properly set KeepaliveDays
instead of ExpiryDays for programs.

Long term, add tests to ensure that the setter and getter functions of chain properties work
correctly.

Trail of Bits 62 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/precompiles/ArbOwner.go#L200-L208

23. Potential nil dereference error in Node.Start

Severity: Informational Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-STYLUS-23

Target: stylus/arbnode/node.go

Description
The Node.Start function may crash the node due to a nil dereference error.

A nil dereference error can happen when Node.Start calls n.configFetcher.Get
(figure 23.1). We assume that n.configFetcher can be nil, as suggested by the nil
check at the end of the Node.Start function. If n.configFetcher is nil, a nil
dereference error will occur when Node.Start calls the LiveConfig type’s Get method
on it (figure 23.2).

We have not determined whether n.configFetcher can actually be nil.

func (n *Node) Start(ctx context.Context) error {
// config is the static config at start, not a dynamic config
config := n.configFetcher.Get()

(...)

if n.configFetcher != nil {
n.configFetcher.Start(ctx)

}
return nil

}

Figure 23.1: stylus/arbnode/node.go#L999–L1126

func (c *LiveConfig[T]) Get() T {
c.mutex.RLock()
defer c.mutex.RUnlock()
return c.config

}

Figure 23.2: stylus/cmd/genericconf/liveconfig.go#L38–L42

Recommendation
Short term, verify whether n.configFetcher can be nil in the Node.Start function; if it
cannot be nil, remove the nil check from the function, but if it can, refactor the code to
handle that case.

Trail of Bits 63 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbnode/node.go#L999-L1126
https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/cmd/genericconf/liveconfig.go#L38-L42

24. Incorrect dataPricer model update in ProgramKeepalive, causing lower
cost and demand

Severity: High Difficulty: Undetermined

Type: Undefined Behavior Finding ID: TOB-STYLUS-24

Target: stylus/arbos/programs/programs.go

Description
When the ProgramKeepalive function calls the dataPricer.UpdateModel function, it
passes in the number of program bytes in kilobytes instead of in bytes (figures 24.1–24.2).
As a result, the computed demand and cost values in wei are lower than intended (figure
24.3).

func (p Programs) ProgramKeepalive(codeHash common.Hash, time uint64) (*big.Int,
error) {

program, err := p.getProgram(codeHash, time)
(...)
cost, err := p.dataPricer.UpdateModel(program.asmEstimate.ToUint32(), time)

Figure 24.1: stylus/arbos/programs/programs.go#L429–L450

type Program struct {
version uint16
initGas uint24
asmEstimate uint24 // Unit is a kb (predicted canonically)
(...)

Figure 24.2: stylus/arbos/programs/programs.go#L40–L47

func (p *DataPricer) UpdateModel(tempBytes uint32, time uint64) (*big.Int, error) {
demand, _ := p.demand.Get()
(...)
demand = arbmath.SaturatingUSub(demand, credit)
demand = arbmath.SaturatingUAdd(demand, tempBytes)

if err := p.demand.Set(demand); err != nil {
return nil, err

}
(...)
costInWei := arbmath.SaturatingUMul(costPerByte, uint64(tempBytes))
return arbmath.UintToBig(costInWei), nil

}

Figure 24.3: stylus/arbos/programs/data_pricer.go#L61–L88

Trail of Bits 64 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbos/programs/programs.go#L429-L450
https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbos/programs/programs.go#L40-L47
https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbos/programs/data_pricer.go#L61-L88

Note that when a program is activated, the DataPricer.UpdateModel is called correctly
with the number of program bytes instead of kilobytes
(stylus/arbos/programs/programs.go#L246–L263). This is because it is called with
the info.asmEstimate variable (from the activationInfo.asmEstimate field), which
is in bytes, instead of the estimateKb variable, which is in kilobytes and which is saved
into the Program.asmEstimate field.

Exploit Scenario
A chain owner sets a keepalive for a program, resulting in an incorrect data price model
update and a cheaper execution of the keepalive function.

Recommendations
Short term, take the following actions:

● Fix the ProgramKeepalive function so that it passes in the number of program
bytes in bytes instead of kilobytes to the dataPrice.UpdateModel function. Note
that this may require code changes in the ActivateProgram function as well so
that both price model update calls receive the same value for the program bytes
amount.

● Change the name of the asmEstimate field in the Program type to asmEstimateKb
to prevent similar issues in the future (unless the field is refactored to hold the
number of bytes).

Long term, add tests for this functionality.

Trail of Bits 65 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbos/programs/programs.go#L246-L263
https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbos/programs/programs.go#L532
https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbos/programs/programs.go#L254-L271
https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbos/programs/programs.go#L254-L271

25. Machine does not properly handle WASM binaries with both Rust and Go
support

Severity: Low Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-STYLUS-25

Target: stylus/arbitrator/prover/src/machine.rs

Description
The from_binaries function parses WASM modules from binaries that have either Rust
or Go support; however, the function may detect both a Rust and Go binary at the same
time (figure 25.1). This would cause an incorrect entrypoint code to be generated from both
the Rust and Go support additions.

A user could create a module that triggers both Rust and Go support by creating a function
named run using the no_mangle attribute in a Rust program and compiling it to a WASM
module.

pub fn from_binaries(/* ... */) -> Result<Machine> {
// Rust support
let rust_fn = "__main_void";
if let Some(&f) = main_exports.get(rust_fn).filter(|_| runtime_support) {

let expected_type = FunctionType::new([], [I32]);
ensure!(

main_module.func_types[f as usize] == expected_type,
"Main function doesn't match expected signature of [] -> [ret]",

);
entry!(@cross, u32::try_from(main_module_idx).unwrap(), f);
entry!(Drop);
entry!(HaltAndSetFinished);

}

// Go support
if let Some(&f) = main_exports.get("run").filter(|_| runtime_support) {

let mut expected_type = FunctionType::default();
(...)
// Launch main with an argument count of 1 and argv_ptr
entry!(I32Const, 1);
entry!(I32Const, argv_ptr);
entry!(@cross, main_module_idx, f);
(...)

}

Figure 25.1: stylus/arbitrator/prover/src/machine.rs#L1194–L1260

Trail of Bits 66 Arbitrum Stylus Security Assessment
PUBLIC

https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
https://github.com/OffchainLabs/stylus/blob/cb3c6dd85c7952f86b857f25733a74ae2ed264de/arbitrator/prover/src/machine.rs#L1194-L1260

Exploit Scenario
A user creates a Rust program that includes a run function marked with the no_mangle
attribute and compiles it to a WASM module to deploy it to the network. The user wastes
funds deploying and activating the module, as it ends up being unusable due to the
creation of incorrect entrypoint code during the WASM module parsing process.

Recommendations
Short term, have the from_binaries function check whether both Rust and Go support is
included and, if so, error out the processing and inform the user that they cannot have
both function names. Additionally, have the function log a message to inform the user
whenever Rust or Go support is detected and that the entrypoint code has been
instrumented as such. This will help users to understand how their code has been
instrumented.

Trail of Bits 67 Arbitrum Stylus Security Assessment
PUBLIC

26. Computation of internal stack hash uses wrong prefix string

Severity: Informational Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-STYLUS-26

Target: stylus/arbitrator/prover/src/machine.rs

Description
The prover::machine::Machine::stack_hashes function computes hashes of the
co-thread frame stacks, value stacks, and internal stack using a prefix string (figure 26.1).
The value stack and the internal stack pass in the same prefix (“Value”) to the hash
computation macros, so certain sub-hashes of the value stack (first_hash, shown in the
figure, and last_hash, omitted from the figure) may have the same value as the internal
stack hash.

This does not seem to create any security risk, but it seems that the prefix for the internal
stack was intended to be different from other stack prefixes.

fn stack_hashes(&self) -> (FrameStackHash, ValueStackHash, InterStackHash) {
macro_rules! compute {

($stack:expr, $prefix:expr) => {{
let frames = $stack.iter().map(|v| v.hash());
hash_stack(frames, concat!($prefix, " stack:"))

}};
}
macro_rules! compute_multistack {

($field:expr, $stacks:expr, $prefix:expr, $hasher: expr) => {{
let first_elem = *$stacks.first().unwrap();
let first_hash = hash_stack(

first_elem.iter().map(|v| v.hash()),
concat!($prefix, " stack:"),

);
// (...) - more code

}};
}
let frame_stacks = compute_multistack!(/* (...) */, "Stack frame",/* (...) */);
let value_stacks = compute_multistack!(/* (...) */, "Value", /* (...) */);
let inter_stack = compute!(self.internal_stack, "Value");

(frame_stacks, value_stacks, inter_stack)
}

Figure 26.1: stylus/arbitrator/prover/src/machine.rs#L2703–L2767

Recommendations

Trail of Bits 68 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbitrator/prover/src/machine.rs#L2703-L2767

Change the prefix used for the internal stack hash computation in the stack_hashes
function to “Internal”. While this may not change any security property of the system, it
will remove a possibility of a hash collision (between the internal stack hash and a partial
hash from the value stack), which could create confusion if seen.

Trail of Bits 69 Arbitrum Stylus Security Assessment
PUBLIC

27. WASI preview 1 may be incompatible with future versions

Severity: Informational Difficulty: Undetermined

Type: Patching Finding ID: TOB-STYLUS-27

Target: Stylus interop layer, WASI

Description
Stylus was recently updated to use Go 1.21’s WASI preview 1 for its WASM execution.
(Previously, WASM was run through a JavaScript engine embedded in the Rust code.)
However, since this iteration of WASI is only a preview and, according to a related issue on
Go’s GitHub repository, “this interface is evolving without the insurance of backward
compatibility,” it may require additional effort to add support for WASI preview 2 and
future WASI versions.

Recommendations
Long term, track the developments of support for WASI preview 2 in Go. Make sure to work
around any version incompatibilities when updating the Stylus codebase to future WASI
versions.

References
● WASI preview 2 meeting presentation (June 2022)

● golang/go#65333: Go issue tracking WASI preview 2 support

Trail of Bits 70 Arbitrum Stylus Security Assessment
PUBLIC

https://go.dev/blog/wasi
https://github.com/golang/go/issues/58141
https://github.com/golang/go/issues/58141
https://github.com/WebAssembly/meetings/blob/main/wasi/2022/presentations/2022-06-30-gohman-wasi-preview2.pdf
https://github.com/golang/go/issues/65333

28. Possible out-of-bounds write in strncpy function in Stylus C SDK

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-STYLUS-28

Target: stylus/arbitrator/langs/c/src/simplelib.c

Description
The strncpy function defined in the Stylus C SDK writes past the destination string when
the source string (src) is shorter than the number of bytes (num) to write to the destination
string (figure 28.1).

This causes another area of the memory of the program to be overwritten, which may have
various consequences depending on the program code and its memory layout.

char *strncpy(char *dst, const char *src, size_t num) {
size_t idx=0;
while (idx<num && src[idx]!=0) {

idx++;
}
memcpy(dst, src, idx);
if (idx < num) {

memset(dst+num, 0, num-idx);
}
return dst;

}

Figure 28.1: stylus/arbitrator/langs/c/src/simplelib.c#L6–L16

This bug can be detected by compiling an example program using this function (figure 28.2)
with ASan (by using the -fsanitize=address flag) with the GCC or Clang compiler.

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

char *mystrncpy(char *dst, const char *src, size_t num) {
// code from Figure 28.1

}

int main() {
char buf[4] = {0};
mystrncpy(buf, "ab", 4);
printf("buf='%s'\n", buf);

Trail of Bits 71 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-sdk-c/blob/29fe05d68672797572080084b0f5f0a282e298ef/src/simplelib.c#L6-L16

}

Figure 28.2: An example program that triggers the bug described in the finding

Figure 28.3: Output from the example program, showing that it detects this issue

Recommendations
Short term, change the problematic line to memset(dst+idx, 0, num-idx); to prevent
the issue described in this finding.

Long term, implement tests for edge-case inputs for the Stylus SDK functions.

References
● strncpy manual page

Trail of Bits 72 Arbitrum Stylus Security Assessment
PUBLIC

https://man7.org/linux/man-pages/man3/strncpy.3p.html

29. Insu�cient out-of-bounds check in memcpy utility function for
ConstString

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-STYLUS-29

Target:
stylus/arbitrator/langs/rust/stylus-sdk/src/abi/const_string.rs

Description
The memcpy utility function, used to implement ConstString functions in the Stylus Rust
SDK, contains an insufficient check against out-of-bounds conditions: it misses the
following conditions that would cause a program to write past the destination buffer:

● The offset is equal to the destination length.

● The source length is larger than the destination length.

/// Copies data from `source` to `dest` in a `const` context.
/// This function is very inefficient for other purposes.
const fn memcpy<const N: usize>(

mut source: &[u8],
mut dest: [u8; N],
mut offset: usize,

) -> [u8; N] {
if offset > dest.len() {

panic!("out-of-bounds memcpy");
}
while !source.is_empty() {

dest[offset] = source[0];
offset += 1;
(_, source) = source.split_at(1);

}
dest

}

Figure 29.1:
stylus/arbitrator/langs/rust/stylus-sdk/src/abi/const_string.rs#L26–L40

Recommendations
Short term, change the insufficient out-of-bounds check in the memcpy function to if
offset + source.len() >= dest.len() to prevent potential bugs that could occur if the
function were used incorrectly.

Long term, implement tests for edge case inputs for the Stylus SDK functions.

Trail of Bits 73 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-sdk-rs/blob/7bb07e556d2da4e623f13bfb099a99f9d85cc297/stylus-sdk/src/abi/const_string.rs#L26-L40

30. Unused and unset timeouts in Arbitrator's JIT code

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-STYLUS-30

Target: Arbitrator JIT code

Description
There are potential issues with timeouts in the Arbitrator’s JIT code:

1. Read and write operations for sockets created in the ready_hostio function (figure
30.1) have no timeouts. If the server the Arbitrator connects to does not send any
data, the lack of timeout could result in a denial of service.

2. The ProcessEnv::child_timeout field, which is set to 15 seconds (figure 30.2), is
unused across the codebase.

fn ready_hostio(env: &mut WasmEnv) -> MaybeEscape {
{...omitted for brevity...}
let socket = TcpStream::connect(&address)?;
socket.set_nodelay(true)?;
// no call to socket.set_{read,write}_timeout

let mut reader = BufReader::new(socket.try_clone()?);

Figure 30.1: stylus/arbitrator/jit/src/wavmio.rs#L198–L303

impl Default for ProcessEnv {
fn default() -> Self {

Self {
forks: false,
debug: false,
socket: None,
last_preimage: None,
timestamp: Instant::now(),
child_timeout: Duration::from_secs(15),
reached_wavmio: false,

}
}

}

Figure 30.2: stylus/arbitrator/jit/src/machine.rs#L331–L342

Recommendations
Short term, take the following actions:

Trail of Bits 74 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbitrator/jit/src/wavmio.rs#L198-L303
https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbitrator/jit/src/machine.rs#L331-L342

● Set timeouts for read and write operations for sockets created in the
ready_hostio function.

● Remove the Process::child_timeout field or refactor the code to use it.

Trail of Bits 75 Arbitrum Stylus Security Assessment
PUBLIC

31. Newmachine hashing format breaks backward compatibility

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-31

Target: stylus/contracts/src/state/Machine.sol

Description
The new hashing format of the One Step Proof (OSP) contracts for the Stylus VM includes
new hashing fields that break backward compatibility for the Nitro VM.

The machine hash of the OSP contracts captures the entirety of the Stylus VM’s state.

function hash(Machine memory mach) internal pure returns (bytes32) {
// Warning: the non-running hashes are replicated in Challenge
if (mach.status == MachineStatus.RUNNING) {

bytes32 valueMultiHash = mach.valueMultiStack.hash(
mach.valueStack.hash(),
mach.recoveryPc != NO_RECOVERY_PC

);
bytes32 frameMultiHash = mach.frameMultiStack.hash(

mach.frameStack.hash(),
mach.recoveryPc != NO_RECOVERY_PC

);
bytes memory preimage = abi.encodePacked(

"Machine running:",
valueMultiHash,
mach.internalStack.hash(),
frameMultiHash,
mach.globalStateHash,
mach.moduleIdx,
mach.functionIdx,
mach.functionPc,
mach.recoveryPc,
mach.modulesRoot

);
return keccak256(preimage);

} else if (mach.status == MachineStatus.FINISHED) {
return keccak256(abi.encodePacked("Machine finished:",

mach.globalStateHash));
} else if (mach.status == MachineStatus.ERRORED) {

return keccak256(abi.encodePacked("Machine errored:"));
} else if (mach.status == MachineStatus.TOO_FAR) {

return keccak256(abi.encodePacked("Machine too far:"));
} else {

revert("BAD_MACH_STATUS");

Trail of Bits 76 Arbitrum Stylus Security Assessment
PUBLIC

}
}

Figure 31.1: The function that creates the hash for the Stylus VM
(stylus-contracts/src/state/Machine.sol#41–74)

The hashing format of the Stylus VM has been updated from the format used to hash the
Nitro VM, shown in figure 31.2; the new format includes multistacks (stacks of stacks) and a
recovery program counter.

function hash(Machine memory mach) internal pure returns (bytes32) {
// Warning: the non-running hashes are replicated in Challenge
if (mach.status == MachineStatus.RUNNING) {

return
keccak256(

abi.encodePacked(
"Machine running:",
mach.valueStack.hash(),
mach.internalStack.hash(),
mach.frameStack.hash(),
mach.globalStateHash,
mach.moduleIdx,
mach.functionIdx,
mach.functionPc,
mach.modulesRoot

)
);

} else if (mach.status == MachineStatus.FINISHED) {
return keccak256(abi.encodePacked("Machine finished:",

mach.globalStateHash));
} else if (mach.status == MachineStatus.ERRORED) {

return keccak256(abi.encodePacked("Machine errored:"));
} else if (mach.status == MachineStatus.TOO_FAR) {

return keccak256(abi.encodePacked("Machine too far:"));
} else {

revert("BAD_MACH_STATUS");
}

}

Figure 31.2: The function that creates the hash for the Nitro VM
(https://etherscan.io/address/0x3E1f62AA8076000c3218493FE3e0Ae40bcB9A1DF#code)

The discrepancy means that the Stylus VM upgrade will cause an inconsistent state
between the hash of the Stylus VM and the previous Nitro VM hash, which is important to
take into account when fraud proving is activated.

Exploit Scenario
Alice and Bob enter a challenge before the upgrade of the Stylus VM and OSP contracts.
The upgrade occurs and causes a mismatch between the current and previous machine
states, so the OSP cannot be run and Alice and Bob are both blocked from proving their
state. Bob loses the challenge due to a timeout.

Trail of Bits 77 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/76d8d07161a33ebf0dbd362e55aba0399fb4ec8d/src/state/Machine.sol#L41-L74
https://etherscan.io/address/0x3E1f62AA8076000c3218493FE3e0Ae40bcB9A1DF#code

Recommendations
Short term, ensure that the fraud proving system is deactivated during the Stylus VM
upgrade.

Long term, thoroughly document the risks associated with breaking backward compatibility
of the machine hash and whether/how the network’s normal operation can be affected
during an upgrade.

Trail of Bits 78 Arbitrum Stylus Security Assessment
PUBLIC

32. Unclear handling of unexpected machine state transitions

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STYLUS-32

Target: stylus/contracts/src/state/Machine.sol

Description
The OSP Machine contract does not handle unexpected state transitions when executing a
single opcode in a consistent manner.

In some cases (such as when setPc is called), the machine enters an errored state when an
unexpected value type is found or when the program counter content contains unexpected
data.

function setPc(Machine memory mach, Value memory pc) internal pure {
if (pc.valueType == ValueType.REF_NULL) {

mach.status = MachineStatus.ERRORED;
return;

}
if (pc.valueType != ValueType.INTERNAL_REF) {

mach.status = MachineStatus.ERRORED;
return;

}
if (!setPcFromData(mach, pc.contents)) {

mach.status = MachineStatus.ERRORED;
return;

}
}

Figure 32.1: Unexpected data in the program counter leads to an errored state.
(stylus-contracts/src/state/Machine.sol#124–137)

The internal setPcFromData function enters an early return condition and does not
update the machine state when unexpected data is present.

function setPcFromData(Machine memory mach, uint256 data) internal pure returns
(bool) {

if (data >> 96 != 0) {
return false;

}

mach.functionPc = uint32(data);
mach.functionIdx = uint32(data >> 32);
mach.moduleIdx = uint32(data >> 64);

Trail of Bits 79 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/76d8d07161a33ebf0dbd362e55aba0399fb4ec8d/src/state/Machine.sol#L124-L137

return true;
}

Figure 32.2: The internal setPcFromData function
(stylus-contracts/src/state/Machine.sol#92–101)

In other cases (such as when the machine is recovering from an errored state and
setPcFromRecovery fails), this unexpected case is simply ignored.

if (mach.status == MachineStatus.ERRORED && mach.recoveryPc !=
MachineLib.NO_RECOVERY_PC) {

// capture error, recover into main thread.
mach.switchCoThreadStacks();
mach.setPcFromRecovery();
mach.status = MachineStatus.RUNNING;

}

Figure 32.3: A failure in setting the program counter is ignored in mach.setPcFromRecovery.
(stylus-contracts/src/osp/OneStepProofEntry.sol#135–140)

function setPcFromRecovery(Machine memory mach) internal pure returns (bool) {
if (!setPcFromData(mach, uint256(mach.recoveryPc))) {

return false;
}
mach.recoveryPc = NO_RECOVERY_PC;
return true;

}

Figure 32.4: The internal setPcFromRecovery function returns a Boolean value indicating an
unexpected state. (stylus-contracts/src/state/Machine.sol#103–109)

In other cases (such as when assumeI32 is called in
executeCrossModuleInternalCall), the unexpected value is handled through a
require check, which essentially blocks the execution of the OSP.

function executeCrossModuleInternalCall(
Machine memory mach,
Module memory mod,
Instruction calldata inst,
bytes calldata proof

) internal pure {
// Get the target from the stack
uint32 internalIndex = uint32(inst.argumentData);
uint32 moduleIndex = mach.valueStack.pop().assumeI32();

Figure 32.5: An unexpected state transition cannot be executed.
(stylus-contracts/src/osp/OneStepProver0.sol#167–175)

function assumeI32(Value memory val) internal pure returns (uint32) {

Trail of Bits 80 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/76d8d07161a33ebf0dbd362e55aba0399fb4ec8d/src/state/Machine.sol#L92-L101
https://github.com/OffchainLabs/stylus-contracts/blob/76d8d07161a33ebf0dbd362e55aba0399fb4ec8d/src/osp/OneStepProofEntry.sol#L135-L140
https://github.com/OffchainLabs/stylus-contracts/blob/76d8d07161a33ebf0dbd362e55aba0399fb4ec8d/src/state/Machine.sol#L103-L109
https://github.com/OffchainLabs/stylus-contracts/blob/0f0a59f8b33294abbcdf90375641593b0eef3f3d/src/osp/OneStepProver0.sol#L167-L175

uint256 uintval = uint256(val.contents);
require(val.valueType == ValueType.I32, "NOT_I32");
require(uintval < (1 << 32), "BAD_I32");
return uint32(uintval);

}

Figure 32.6: The assumeI32 function requires the value to be of the expected data format and
blocks execution otherwise. (stylus-contracts/src/state/Value.sol#31–36)

In order to have a clearly defined incident response plan, unexpected state transitions
should be handled consistently.

Recommendations
Short term, have the machine handle all listed unexpected machine state transitions from
the OSP in the same way (e.g., by transitioning into an errored state).

Long term, document all the invalid state transitions across components and decide on a
sound and safe strategy to handle them.

Trail of Bits 81 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/2ba206505edd15ad1e177392c454e89479959ca5/src/state/Value.sol#L31-L36

33. Potential footguns and attack vectors due to newmemory model

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STYLUS-33

Target: arbos/programs/programs.go

Description
The Stylus memory model introduces new concepts that might be surprising to developers
who are familiar with the EVM model; these new concepts could also introduce potential
attack vectors.

The Stylus memory model uses a global memory model, in which each new memory page
allocation is priced exponentially given the number of pages shared across all user
programs. This is in contrast to the EVM, which prices memory quadratically and
independently of other programs’/contracts’ use of memory.

With certain patterns (e.g., ERC-4337 UserOperation forwarding/relaying), it may be
essential to have predictable costs for memory expansion in the current context in order to
ensure that relayed calls are executed with the conditions the original signer intended.
Because a relayed call typically involves handling memory, these costs must be taken into
account for the outer call that wraps the inner call. If these costs can be influenced by
previous user programs allocating a large number of memory pages, it might open up new
attack vectors.

Exploit Scenario
A relaying contract wraps an inner call with a fixed amount of gas. The inner call requires
memory allocation. Because the outer call can open an arbitrary number of memory pages,
the inner call fails unexpectedly due to the increased gas cost of global memory allocation.

Recommendations
Long term, make developers aware of any deviation from the EVM model and its potential
security considerations.

Trail of Bits 82 Arbitrum Stylus Security Assessment
PUBLIC

34. Storage cache can become out of sync for reentrant and delegated calls

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-STYLUS-34

Target: stylus/arbitrator/stylus/src/lib.rs,
stylus/arbitrator/arbutil/src/evm/req.rs

Description
A storage cache’s known values can become out of sync, causing storage reads to be
outdated and storage write operations to be omitted.

Storage caches take into account only their current call context. Every Stylus program call
creates a new EVM API requestor (EvmApiRequestor).

#[no_mangle]
pub unsafe extern "C" fn stylus_call(

module: GoSliceData,
calldata: GoSliceData,
config: StylusConfig,
req_handler: NativeRequestHandler,
evm_data: EvmData,
debug_chain: u32,
output: *mut RustBytes,
gas: *mut u64,

) -> UserOutcomeKind {
let module = module.slice();
let calldata = calldata.slice().to_vec();
let compile = CompileConfig::version(config.version, debug_chain != 0);
let evm_api = EvmApiRequestor::new(req_handler);
let pricing = config.pricing;
let output = &mut *output;
let ink = pricing.gas_to_ink(*gas);

// ...
}

Figure 34.1: A call to a Stylus program creates a new EVM API requestor.
(stylus/arbitrator/stylus/src/lib.rs#169–205)

When a new EVM API requestor is created, a new StorageCache struct is created as well.

impl<D: DataReader, H: RequestHandler<D>> EvmApiRequestor<D, H> {
pub fn new(handler: H) -> Self {

Self {

Trail of Bits 83 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/0497d2de2374ca316e66aa502b932b3c3af63c94/arbitrator/stylus/src/lib.rs#L169-L205

handler,
last_code: None,
last_return_data: None,
storage_cache: StorageCache::default(),

}
}

Figure 34.2: A new storage cache is created.
(stylus/arbitrator/arbutil/src/evm/req.rs#28–36)

When there is no need to share storage state between two calls, storage caches can
operate independently of each other without any issues. However, in the EVM contract,
storage state is shared for delegated and reentrant calls.

A call that would share storage state would also create a new storage cache struct, which
can cause the first storage cache to become out of sync when the second cache modifies
some of the first cache’s “known” values. Known values are those that the storage cache
thinks are located in the state trie.

Such situations could cause storage reads to be incorrect or outdated and write operations
to be omitted.

Exploit Scenario
A multisignature Stylus program SmartWallet allows arbitrary program execution with
one important invariant: the ownership of the program is not allowed to change after the
execution of the inner call (figure 34.3). Because the inner call is a reentrant call, the
storage cache becomes out of sync; this causes the ownership invariant check to be faulty,
allowing it to be bypassed (figures 34.4–34.5).

#![no_main]

use stylus_sdk::{
alloy_primitives::Address,
call::RawCall,
console,
stylus_proc::{entrypoint, external, sol_storage},

};

extern crate alloc;

#[global_allocator]
static ALLOC: mini_alloc::MiniAlloc = mini_alloc::MiniAlloc::INIT;

sol_storage! {
#[entrypoint]
pub struct SmartWallet {

address owner;
bool initialized;

}

Trail of Bits 84 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/704ce1bcbad394b84558aa695a7bff05344d6750/arbitrator/arbutil/src/evm/req.rs#L28-L36

}

#[external]
impl SmartWallet {

pub fn owner(&self) -> Result<Address, String> {
Ok(self.owner.get())

}

pub fn initialize(&mut self, owner: Address) -> Result<(), String> {
if self.initialized.get() {

return Err("Already initialized".into());
}

self.owner.set(owner);
self.initialized.set(true);

Ok(())
}

pub fn execute(&mut self, args: Vec<u8>) -> Result<Vec<u8>, Vec<u8>> {
// ... some multisig access controls
let previous_owner = self.owner.get();

let mut args = &args[..];

let mut take_args = |n_bytes: usize| -> &[u8] {
let value = &args[..n_bytes];
args = &args[n_bytes..];
value

};

let kind = take_args(1)[0];
let addr = Address::try_from(take_args(20)).unwrap();
let raw_call = match kind {

0 => RawCall::new(),
1 => RawCall::new_delegate(),
2 => RawCall::new_static(),
x => panic!("unknown call kind {x}"),

};

let return_data = raw_call.call(addr, args)?;

assert_eq!(
previous_owner,
self.owner.get(),
"Owner cannot change during `execute` call"

);

Ok(return_data)
}

}

Trail of Bits 85 Arbitrum Stylus Security Assessment
PUBLIC

Figure 34.3: A multisignature wallet that includes an invariant that the program ownership must
not change after the execution of the inner call

func TestProgramSmartWalletPoc(t *testing.T) {
t.Parallel()
testSmartWalletPoc(t, true)

}

func testSmartWalletPoc(t *testing.T, jit bool) {
builder, auth, cleanup := setupProgramTest(t, jit)
ctx := builder.ctx
l2info := builder.L2Info
l2client := builder.L2.Client
defer cleanup()

ownerAddress := l2info.GetAddress("Owner")

programAddr := deployWasm(t, ctx, auth, l2client,
"../arbitrator/stylus/tests/storage-poc/target/wasm32-unknown-unknown/release/storag
e-poc.wasm")

storageAddr := deployWasm(t, ctx, auth, l2client, rustFile("storage"))

colors.PrintGrey("storage.wasm ", storageAddr)
colors.PrintGrey("storage-poc.wasm ", programAddr)

programsAbi :=
`[{"type":"function","name":"execute","inputs":[{"name":"args","type":"uint8[]"}],"o
utputs":[],"stateMutability":"nonpayable"},{"type":"function","name":"initialize","i
nputs":[{"name":"owner","type":"address","internalType":"address"}],"outputs":[],"st
ateMutability":"nonpayable"},{"type":"function","name":"owner","inputs":[],"outputs"
:[{"name":"","type":"uint256","internalType":"uint256"}],"stateMutability":"view"}]`

callOwner, _ := util.NewCallParser(programsAbi, "owner")
callInitialize, _ := util.NewCallParser(programsAbi, "initialize")
callExecute, _ := util.NewCallParser(programsAbi, "execute")

ensure := func(tx *types.Transaction, err error) *types.Receipt {
t.Helper()
Require(t, err)
receipt, err := EnsureTxSucceeded(ctx, l2client, tx)
Require(t, err)
return receipt

}
pack := func(data []byte, err error) []byte {

Require(t, err)
return data

}
assertProgramOwnership := func() {

args, _ := callOwner()
returnData := sendContractCall(t, ctx, programAddr, l2client, args)
newOwner := common.BytesToAddress(returnData)
if ownerAddress == newOwner {

Trail of Bits 86 Arbitrum Stylus Security Assessment
PUBLIC

colors.PrintRed("Ownership remains")
} else {

Fatal(t, "Owner changed", ownerAddress, newOwner)
}

}

tx := l2info.PrepareTxTo("Owner", &programAddr, 1e9, nil,
pack(callInitialize(ownerAddress)))

ensure(tx, l2client.SendTransaction(ctx, tx))

// "Owner" remains the owner of the program.
assertProgramOwnership()

key := common.Hash{}
value := common.HexToHash("0xdead")

args := []uint8{}
args = append(args, 0x01) // delegatecall
args = append(args, storageAddr.Bytes()...) // storage address
args = append(args, 0x01) // storage write op
args = append(args, key.Bytes()...) // key
args = append(args, value.Bytes()...) // value

tx = l2info.PrepareTxTo("Owner", &programAddr, 1e9, nil,
pack(callExecute(args)))

ensure(tx, l2client.SendTransaction(ctx, tx))

// This passes
// The `owner` address has been modified through the call to `execute`.
assertStorageAt(t, ctx, l2client, programAddr, key, value)
// This fails
// "Owner" is not the owner of the program anymore.
assertProgramOwnership()

validateBlocks(t, 1, jit, builder)
}

Figure 34.4: The Go system test, which is able to bypass SmartWallet’s ownership invariant

go test ./system_tests/... -run ^TestProgramSmartWalletPoc$
...
Ownership remains
...
--- FAIL: TestProgramSmartWalletPoc (0.81s)

program_test.go:1096: [Owner changed 0x26E554a8acF9003b83495c7f45F06edCB803d4e3
0x000000000000000000000000000000000000dEaD]
FAIL
FAIL github.com/offchainlabs/nitro/system_tests 1.735s
FAIL

Figure 34.5: The program ownership is changed.

Recommendations

Trail of Bits 87 Arbitrum Stylus Security Assessment
PUBLIC

Short term, modify the associated code so that the storage cache’s values are committed
beforehand whenever delegated or reentrant calls are possible. Alternatively, consider
sharing storage caches between call frames. However, the second option will likely come
with significant code inefficiencies and overhead.

Long term, thoroughly document the intended behavior of the cache, including whether it
should persist across calls and any potentially unsafe uses for Stylus developers.

Trail of Bits 88 Arbitrum Stylus Security Assessment
PUBLIC

35. Storage cache can be written to in a static call context

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-STYLUS-35

Target: stylus/arbitrator/arbutil/src/evm/req.rs

Description
The storage cache can be written to inside of a static call context, which can lead to
confusing and unexpected behavior.

The storage cache is intended to minimize storage read and write operations. When the
storage cache is flushed, only the values that have changed from the known values (i.e.,
values that are “dirty”) are committed to the persistent storage state, via the
EvmApiMethod::SetTrieSlots method.

fn flush_storage_cache(&mut self, clear: bool, gas_left: u64) -> Result<u64> {
let mut data = Vec::with_capacity(64 * self.storage_cache.len() + 8);
data.extend(gas_left.to_be_bytes());

for (key, value) in &mut self.storage_cache.slots {
if value.dirty() {

data.extend(*key);
data.extend(*value.value);
value.known = Some(value.value);

}
}
if clear {

self.storage_cache.clear();
}
if data.len() == 8 {

return Ok(0); // no need to make request
}

let (res, _, cost) = self.request(EvmApiMethod::SetTrieSlots, data);
if res[0] != EvmApiStatus::Success.into() {

bail!("{}", String::from_utf8_or_hex(res));
}
Ok(cost)

}

Figure 35.1: Only dirty values are committed to persistent state when the storage cache is
flushed. (stylus/arbitrator/arbutil/src/evm/req.rs#122–145)

Values that are not dirty do not result in EvmApiMethod::SetTrieSlots requests.

Trail of Bits 89 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/704ce1bcbad394b84558aa695a7bff05344d6750/arbitrator/arbutil/src/evm/req.rs#L122-L145

In order for a value to be known, it must be either retrieved from Geth via the GetBytes32
EVM API method or committed by the storage cache itself via the SetTrieSlots EVM API
method.

This means that a get request can change the behavior of a subsequent storage cache flush
host I/O operation, leading to strange and unexpected behavior inside a static call context
where persistent state changes are not permitted.

Exploit Scenario
Inside of a static call context, storage writes are not allowed. However, writing multiple
values to the storage cache is allowed if they end up equaling the known values.

#![no_main]

use stylus_sdk::{
alloy_primitives::{B256, U256},
call::RawCall,
console, contract, msg,
storage::{GlobalStorage, StorageCache},
stylus_proc::entrypoint,

};

extern crate alloc;

#[global_allocator]
static ALLOC: mini_alloc::MiniAlloc = mini_alloc::MiniAlloc::INIT;

#[entrypoint]
fn user_main(_input: Vec<u8>) -> Result<Vec<u8>, Vec<u8>> {

let slot = U256::from(0);

let get = |slot| {
let value = StorageCache::get_word(slot);
console!("StorageCache::get_word({slot}) -> {value}");

};
let set = |slot, value| {

console!("StorageCache::set_word({slot}, {value})");
unsafe { StorageCache::set_word(slot, value) };

};
let flush = || {

console!("StorageCache::flush()");
StorageCache::flush();

};
if msg::reentrant() {

get(slot); // If this line is removed, the staticcall fails.

// Inside staticcall context.
set(slot, B256::new([0xaa; 32]));
set(slot, B256::new([0xbb; 32]));
set(slot, B256::new([0x00; 32]));

Trail of Bits 90 Arbitrum Stylus Security Assessment
PUBLIC

flush();
} else {

// Make reentrant static call.
let address = contract::address();
unsafe { RawCall::new_static().call(address, &[])? };

}

Ok(vec![])
}

Figure 35.2: The static call fails if a previous GetBytes32 EVM API request is removed.

Recommendations
Short term, consider forbidding writes to the storage cache inside of a static call context.
This is especially important if the storage cache is to be shared among reentrant calls, as
explained in the issue TOB-STYLUS-34, as a static call should not be able to influence
another call’s behavior through shared state (aside from gas costs).

Long term, be aware of optimizations that could lead to strange and confusing patterns
when interacting with the system on a higher level.

Trail of Bits 91 Arbitrum Stylus Security Assessment
PUBLIC

36. Revert conditions always override user returned status

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-36

Target: arbitrator/wasm-libraries/user-host/src/link.rs

Description
Certain corner conditions in Stylus program execution can cause valid executions to be
flagged as reverts.

Once a Stylus program exits early, the early_exit flag is used to indicate that early
should be set as the exit code in the program_internal__set_done function (figure
36.1).

#[no_mangle]
pub unsafe extern "C" fn program_internal__set_done(mut status: UserOutcomeKind) ->
u32 {

use UserOutcomeKind::*;

let program = Program::current();
let module = program.module;
let mut outs = program.outs.as_slice();
let mut ink_left = program_ink_left(module);

// apply any early exit codes
if let Some(early) = program.early_exit {

status = early;
}

// check if instrumentation stopped the program
if program_ink_status(module) != 0 {

status = OutOfInk;
outs = &[];
ink_left = 0;

}
if program_stack_left(module) == 0 {

status = OutOfStack;
outs = &[];
ink_left = 0;

}

let gas_left = program.config.pricing.ink_to_gas(ink_left);

let mut output = Vec::with_capacity(8 + outs.len());
output.extend(gas_left.to_be_bytes());

Trail of Bits 92 Arbitrum Stylus Security Assessment
PUBLIC

output.extend(outs);
program

.request_handler()

.set_request(status as u32, &output)
}

Figure 36.1: The program_internal__set_done function in
arbitrator/wasm-libraries/user-host/src/link.rs#L194–L228

However, this function can override the status returned for program executions if either
the ink amount or the stack size is zero, flagging them as reverts. Both of these conditions
can be reached if a program exits early.

Exploit Scenario
Alice optimizes a Stylus program execution to use exactly a certain amount of ink in the
context of a larger DeFi system executing untrusted calls. Her program is called with the
exact amount of ink required to run, so it exits with zero ink left. However, the execution is
flagged as a revert.

Recommendations
Short term, consider changing the program_internal__set_done function so that valid
executions resulting in zero gas are not automatically flagged as reverts, making sure the
common out-of-gas and out-of-stack executions are handled correctly.

Long term, review the local and global invariants behind each component to make sure
corner cases are correctly defined and handled.

Trail of Bits 93 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbitrator/wasm-libraries/user-host/src/link.rs#L194-L228

37. CacheManager bids cannot be increased

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-37

Target: stylus-contracts/src/chain/CacheManager.sol

Description
Bids in the cache manager placed on a particular code hash cannot be modified and do not
accumulate.

When a bid is placed, the CacheManager Solidity contract checks whether the code hash is
currently cached and reverts the bid if so.

/// Places a bid, reverting if payment is insufficient.
function placeBid(bytes32 codehash) external payable {

if (isPaused) {
revert BidsArePaused();

}
if (_isCached(codehash)) {

revert AlreadyCached(codehash);
}

uint64 asm = _asmSize(codehash);
(uint256 bid, uint64 index) = _makeSpace(asm);
return _addBid(bid, codehash, asm, index);

}

Figure 37.1: This check prevents bids from being placed on already cached programs.
(stylus-contracts/src/chain/CacheManager.sol#104–144)

This makes it impossible to increase a bid before the program is evicted either due to other
bids being placed or through sufficient calls to makeSpace.

This limitation creates a bad user experience. A user who wants to increase a bid would
have to create a new bid, but would first have to pay to evict the program. It might also
make it difficult for a popular dapp with many low-capital users to coordinate and combine
their funds for a shared bid.

Exploit Scenario
Bob wants to increase a previous bid to his token program. He cannot simply place a new
bid; he is required to make sufficient space. He calls makeSpace to evict his own program,
requiring a 1 ETH payment. In order to add his new 2 ETH bid, he must now pay 3 ETH in
total.

Trail of Bits 94 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/f3445c042a09cbe493aafae3c5136b7f54411298/src/chain/CacheManager.sol#L104-L144

Recommendations
Short term, document this limitation of the auction system. Consider adding an alternative
unsafe function that does not check whether the code is already cached (however, this
would allow multiple entries per code hash). Alternatively, consider adjusting the
implementation to allow bids for programs to be increased.

Long term, review the bid mechanisms with user experience in mind; document any
sources of friction and ways in which they could be mitigated.

Trail of Bits 95 Arbitrum Stylus Security Assessment
PUBLIC

38. The makeSpace function does not refund excess bid value and can be
front-run

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STYLUS-38

Target: stylus-contracts/src/chain/CacheManager.sol

Description
The makeSpace function, used to make space for programs in the cache manager, does not
refund funds sent above the minimum bid value, even if no state changes are performed.

The makeSpace function accepts ETH and requires a minimum bid to be made until
enough space is available.

/// Evicts entries until enough space exists in the cache, reverting if payment is
insufficient.
/// Returns the new amount of space available on success.
/// Note: will only make up to 5Mb of space. Call repeatedly for more.
function makeSpace(uint64 size) external payable returns (uint64 space) {

if (size > MAX_MAKE_SPACE) {
size = MAX_MAKE_SPACE;

}
_makeSpace(size);
return cacheSize - queueSize;

}

/// Evicts entries until enough space exists in the cache, reverting if payment is
insufficient.
/// Returns the bid and the index to use for insertion.
function _makeSpace(uint64 size) internal returns (uint256 bid, uint64 index) {

// discount historical bids by the number of seconds
bid = msg.value + block.timestamp * uint256(decay);
index = uint64(entries.length);

uint256 min;
while (queueSize + size > cacheSize) {

(min, index) = _getBid(bids.pop());
_deleteEntry(min, index);

}
if (bid < min) {

revert BidTooSmall(bid, min);
}

}

Trail of Bits 96 Arbitrum Stylus Security Assessment
PUBLIC

Figure 38.1: The makeSpace function requires the minimum bid to be matched until enough
space is made. (stylus-contracts/src/chain/CacheManager.sol#118–144)

The contract keeps any funds sent above the minimum bid value. This includes the case in
which enough space is already available and no funds are required. This can happen, for
example, when two calls to makeSpace are initiated by different parties.

There is also the possibility that a user calls makeSpace to create space, only for that space
to be occupied by other bids right after it is freed.

Exploit Scenario
Bob calls makeSpace in order to free up space in the cache manager. In the meantime,
Alice calls makeSpace herself for the same reason. Bob’s transaction ends up doing nothing
and does not return his funds. Alice is able to insert her program, whereas Bob is where he
was at the start.

Recommendations
Short term, have the cache manager refund any excess funds sent above the minimum bid
required for making enough space.

Long term, document this behavior so that users are aware of it.

Trail of Bits 97 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/f3445c042a09cbe493aafae3c5136b7f54411298/src/chain/CacheManager.sol#L118-L144

39. Bids do not account for program size

Severity: Informational Difficulty: Medium

Type: Data Validation Finding ID: TOB-STYLUS-39

Target: stylus-contracts/src/chain/CacheManager.sol

Description
It is possible for a single bid to evict many programs, regardless of their cumulative price
per program byte size, resulting in an unfair auction system.

A program that is to be inserted into the cache manager with a slightly higher bid than
many others will be prioritized over those other programs, regardless of the total amount
paid per occupied code size. This is because the code for adding a bid for a program does
not take into account the program size itself.

/// Adds a bid
function _addBid(

uint256 bid,
bytes32 code,
uint64 size,
uint64 index

) internal {
if (queueSize + size > cacheSize) {

revert AsmTooLarge(size, queueSize, cacheSize);
}

Entry memory entry = Entry({size: size, code: code});
ARB_WASM_CACHE.cacheCodehash(code);
bids.push(_packBid(bid, index));
queueSize += size;
if (index == entries.length) {

entries.push(entry);
} else {

entries[index] = entry;
}
emit InsertBid(bid, code, size);

}

Figure 39.1: The _addBid function does not take program size into account
(stylus-contracts/src/chain/CacheManager.sol#145–167)

Exploit Scenario
There are 50 programs in the cache manager, each of size 0.1 MB and a 1 ETH bid. Bob
inserts a new program with a 1.01 ETH bid. If Bob’s program size is 0.1 MB, one program

Trail of Bits 98 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/f3445c042a09cbe493aafae3c5136b7f54411298/src/chain/CacheManager.sol#L145-L167

will be evicted (1 ETH worth of bids). If the program size is 5 MB, 50 programs will be
evicted (50 ETH worth of bids).

Bob’s program should not be able to evict any number of programs without paying extra
fees.

Recommendations
Short term, consider dividing the bid in _addBid by the program size in order to charge a
price per byte instead of a fixed price per program.

Long term, thoroughly document the intended behavior of the cache manager in terms of
program sizes.

Trail of Bits 99 Arbitrum Stylus Security Assessment
PUBLIC

40. Incorrect bid check

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-40

Target: stylus-contracts/src/chain/CacheManager.sol

Description
The _makeSpace function allows new bids to go through if they are equal to the current bid
(figure 40.1). This is unexpected for an auction system, in which new bids should be
considered only if they are superior to previous ones.

/// Evicts entries until enough space exists in the cache, reverting if payment is
insufficient.
/// Returns the bid and the index to use for insertion.
function _makeSpace(uint64 size) internal returns (uint192 bid, uint64 index) {

// discount historical bids by the number of seconds
bid = uint192(msg.value + block.timestamp * uint256(decay));
index = uint64(entries.length);

uint192 min;
uint64 limit = cacheSize;
while (queueSize + size > limit) {

(min, index) = _getBid(bids.pop());
_deleteEntry(min, index);

}
if (bid < min) {

revert BidTooSmall(bid, min);
}

}

Figure 40.1: The check is a less-than comparison, allowing bids equal to the current bid to be
accepted. (stylus-contracts/src/chain/CacheManager.sol#137–153)

Recommendations
Short term, replace the check with bid <= min.

Long term, thoroughly document the intended behavior of the auction system and use it as
a baseline to review its actual behavior.

Trail of Bits 100 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/e3725f7dfe625248be2824e0e92aaf7b5d4164d5/src/chain/CacheManager.sol#L137C1-L153C6

41. MemoryGrow opcode is underpriced for programs with fixed memory

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-STYLUS-41

Target: prover/src/programs/meter.rs, prover/src/programs/heap.rs

Description
The ink charged by the MemoryGrow opcode is less than expected for programs that have a
fixed memory size.

Stylus defines an ink price for every WASM opcode to be used during program activation.
The costs for certain opcodes, such as MemoryGrow, are handled by a different part of the
code (figure 41.4).

pub fn pricing_v1(op: &Operator, tys: &HashMap<SignatureIndex, FunctionType>) -> u64
{
…
let ink = match op {

{...omitted for brevity...}
dot!(MemoryGrow) => 1, // cost handled by memory pricer

Figure 41.1: Part of the pricing_v1 function that defers the ink price for MemoryGrow to the
memory pricer

However, if a WASM program has fixed memory (and therefore does not import the pay
function), the cost of the opcode will be unmodified (figure 41.2).

impl<'a> FuncMiddleware<'a> for FuncHeapBound {
fn feed<O>(&mut self, op: Operator<'a>, out: &mut O) -> Result<()>
where

O: Extend<Operator<'a>>,
{

use Operator::*;

let Some(pay_func) = self.pay_func else {
out.extend([op]);
return Ok(());

};

Figure 41.2: The header of the feed function of the FuncHeapBoundmiddleware

A call to MemoryGrow for a program with a fixed memory returns -1, which is correct
according to the WASM standard. Unfortunately, the price of that opcode will be 1 ink,
which is too small to cover the actual cost of the operation in a WASM execution.

Trail of Bits 101 Arbitrum Stylus Security Assessment
PUBLIC

Exploit Scenario
Eve crafts a malicious WASM program that repeatedly triggers the MemoryGrow opcode in a
WASM program that has a fixed memory in order to exhaust the resources of the
validators. Due to the low cost of the MemoryGrow opcode on programs with a fixed
memory, she pays a minimal amount of ink to carry out the attack.

Recommendations
Short term, increase the cost of the MemoryGrow opcode to make sure it is sufficient for all
programs, including those with fixed memory.

Long term, perform fuzz testing of the processes for validating, activating, and executing
WASM contracts.

Trail of Bits 102 Arbitrum Stylus Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 103 Arbitrum Stylus Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 104 Arbitrum Stylus Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Transaction
Ordering

The system’s resistance to transaction-ordering attacks

Trail of Bits 105 Arbitrum Stylus Security Assessment
PUBLIC

C. Sequence Diagrams

In order to understand the high-level infrastructure and invocations in the code, we used
mermaid-js to visualize data validation across the system.

WASM Instrumentation
Figure C.1 illustrates the expected calls of the config.rs and binary.rs files.

Figure C.1: A sequence diagram of the WASM instrumentation setup

Trail of Bits 106 Arbitrum Stylus Security Assessment
PUBLIC

Middleware
Figure C.2 shows the middleware used across the system.

Trail of Bits 107 Arbitrum Stylus Security Assessment
PUBLIC

Figure C.2: A sequence diagram of the middleware used in the system

Trail of Bits 108 Arbitrum Stylus Security Assessment
PUBLIC

Figure C.3 shows the mermaid-js markdown used to render the flowcharts.

WASM Instrumentation

```mermaid
sequenceDiagram;

participant caller

participant config.rs
caller ->> config.rs: compile version, price parameters, memory bounds, and debug
parameters
config.rs -->> config.rs: CompileConfig::store: saves parameter to memory
config.rs ->> config.rs: push meter, dygas, depth, bound, start middleware
note right of config.rs: see config.rs#L190-L194

participant binary.rs
caller ->> binary.rs: ::parseUser to instrument user wasm
binary.rs ->> binary.rs: ::instrument() function
loop Loop for all "codes"

binary.rs -->> binary.rs: IF middleware, call ::instrument
binary.rs -->> binary.rs: swap memory
binary.rs -->> caller: if failed, wrap error
binary.rs -->> binary.rs: apply [meter, dynamic meter, depth checker, heap

bound, start] in order
binary.rs ->> caller: RETURN StylusData (ink_left, ink_status, depth_left,

footprint)
end
binary.rs -->> caller: REVERT IF: memory missing with export name
binary.rs -->> caller: REVERT IF: wasm does not fit into remaining memory
binary.rs -->> caller: REVERT IF: too many wasm instructions (antidos)
binary.rs -->> caller: REVERT IF: too many macro rules
binary.rs -->> caller: REVERT IF: "name" or "module name" is too long
binary.rs -->> caller: REVERT IF: is wasm start function
note left of binary.rs: can only have a single start function
binary.rs -->> caller: REVERT IF: missing stylus entrypoint
binary.rs -->> caller: REVERT IF: stylus entrypoint is not a function
binary.rs -->> caller: REVERT IF: entrypoint does not take ArbValueType::I32 input
and ArbValueType::I32 output
```

Middlewares
``` mermaid
sequenceDiagram;

participant binary.rs

participant meter.rs
meter.rs -->> meter.rs: ::instrument function #L70
meter.rs -->> meter.rs: create new FuncMeter
binary.rs ->> meter.rs: specifies `pricing_v1` in config.rs
loop loop match opcodes

Trail of Bits 109 Arbitrum Stylus Security Assessment
PUBLIC



alt if supported dot/opcodes
meter.rs ->> binary.rs: RETURN: metered gas costs

else if unsupported opcode:
meter.rs ->> binary.rs: RETURN: U64_MAX

end
end

participant dynamic.rs
binary.rs ->> dynamic.rs: STEP 2: applied from binary.rs
loop loop "feed"

dynamic.rs -->> dynamic.rs: convert instructions to linear wasm representation
(#L105-L134)

alt is MemoryFill
dynamic.rs -->> dynamic.rs: extend linear (memfill)

else is MemoryCopy
dynamic.rs -->> dynamic.rs: extend linear (memcopy)

else is unsupported opcode
dynamic.rs ->> binary.rs: REVERT: opcode unsupported
note left of dynamic.rs: MemoryInit, DataDrop, ElemDrop, TableInit,

TableCopy, TableFill, TableGet, TableSet, TableGrow, TableSize
end

end

participant heap.rs
binary.rs ->> heap.rs: instrumented
heap.rs -->> binary.rs: REVERT IF: scratch global contains data
loop loop memory_grow on heap

opt memory is growing
heap.rs -->> heap.rs: extend global set

end
end

participant depth.rs
binary.rs ->> depth.rs: instrumented
opt if 'finalized'

depth.rs -->> binary.rs: REVERT IF: finalized too soon
end
alt op is a Block | Loop | If

depth.rs -->> depth.rs: scope += 1
else is End

depth.rs -->> depth.rs: scope -= 1
end
opt if scope < 0

depth.rs -->> binary.rs: REVERT: scope malformed
end
opt if op=End and scopes = 0

depth.rs ->> binary.rs: OK()
end
opt remaining size > frame limit

depth.rs -->> binary.rs: REVERT IF: frame too large
end
opt space <= size

Trail of Bits 110 Arbitrum Stylus Security Assessment
PUBLIC



depth.rs -->> depth.rs: add unreachable/end, with depth = 0
end
opt reclaim space

depth.rs -->> depth.rs: space += size
end
loop remaining opcodes

depth.rs -->> depth.rs: add return instruction to wasm
end

binary.rs ->> start.rs: ASSUMPTION: apply start function

participant start.rs
note left of start.rs: Moves the WASM start function
start.rs ->> start.rs: ::instrument [unsure]
binary.rs ->> meter.rs: STEP 1: applied from binary.rs

participant counter.rs
```

Figure C.3: The mermaid-js representations of the sequence diagrams in the appendix (figures
C.1–C.2)

Trail of Bits 111 Arbitrum Stylus Security Assessment
PUBLIC

D. Code Quality Findings

Rust Code
● Some areas of the code write values to WASM memory (e.g., block_coinbase),

while other areas read values (e.g., block_gas_limit). The need to write values in
those cases is unclear.

pub(crate) fn block_coinbase<E: EvmApi>(mut env: WasmEnvMut<E>, ptr: u32) ->
MaybeEscape {

let mut env = WasmEnv::start(&mut env, PTR_INK)?;
env.write_bytes20(ptr, env.evm_data.block_coinbase)?;
trace!("block_coinbase", env, &[], env.evm_data.block_coinbase)

}
pub(crate) fn block_gas_limit<E: EvmApi>(mut env: WasmEnvMut<E>) -> Result<u64,
Escape> {

let mut env = WasmEnv::start(&mut env, 0)?;
let limit = env.evm_data.block_gas_limit;
trace!("block_gas_limit", env, &[], be!(limit), limit)

}

Figure D.1: The block_coinbase and block_gas_limit functions in
arbitrator/wasm-libraries/user-host-trait/src/lib.rs#L665–L682

● The contractCallImpl function’s evmGas variable (figure D.2) is overwritten in the
contract_call function (figure D.3), which can lead to confusion.

func contractCallImpl(api usize, contract bytes20, data *rustSlice, evmGas *u64,
value bytes32, len *u32) apiStatus {

closures := getApi(api)
ret_len, cost, err := closures.contractCall(contract.toAddress(), data.read(),

uint64(*evmGas), value.toBig())
*evmGas = u64(cost) // evmGas becomes the call's cost
*len = u32(ret_len)
if err != nil {

return apiFailure
}
return apiSuccess

}

Figure D.2: The contractCallImpl function sets the evmGas variable.
(arbos/programs/native.go)

fn contract_call(
&mut self,
contract: Bytes20,
calldata: &[u8],
gas: u64,
value: Bytes32,

Trail of Bits 112 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbitrator/wasm-libraries/user-host-trait/src/lib.rs#L665-L682

) -> (u32, u64, UserOutcomeKind) {
let mut call_gas = gas; // becomes the call's cost

Figure D.3: The contract_call function in arbitrator/arbutil/src/evm/api.rs

● Functions do not always have the same ordering of return arguments (e.g.,
static_call and create1), which is an error-prone coding practice.

fn static_call(
&mut self,
contract: Bytes20,
calldata: &[u8],
gas: u64,

) -> (u32, u64, UserOutcomeKind) {
{...omitted for brevity...}
(return_data_len, call_gas, api_status.into())

}

fn create1(
&mut self,
code: Vec<u8>,
endowment: Bytes32,
gas: u64,

) -> (Result<Bytes20>, u32, u64) {
{...omitted for brevity...}
(result, return_data_len, call_gas)

}

Figure D.4: The static_call and create1 functions in
arbitrator/arbutil/src/evm/api.rs

● Some operations that can panic are undocumented. Additionally, some operations
use unwrap instead of expect (e.g., universal_test), so reasons for erroring are
unclear.

pub fn universal_test(_attr: TokenStream, item: TokenStream) -> TokenStream {
let item_clone = item.clone();
let mut iter = item_clone.into_iter();
let _ = iter.next().unwrap(); // fn
{...omitted for brevity...}

}

Figure D.5: The universal_test function in
arbitrator/tools/wasmer/lib/api/macro-wasmer-universal-test/src/lib.rsL7

–L36

● The jump_into_func function includes an error message with a typo: offest
should be offset.

Trail of Bits 113 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/wasmer/blob/6b15433d83f951555c24f0c56dc05e4751b0cc76/lib/api/macro-wasmer-universal-test/src/lib.rs#L7-L36
https://github.com/OffchainLabs/wasmer/blob/6b15433d83f951555c24f0c56dc05e4751b0cc76/lib/api/macro-wasmer-universal-test/src/lib.rs#L7-L36

pub fn jump_into_func(&mut self, module: u32, func: u32, mut args: Vec<Value>) ->
Result<()> {

let Some(source_module) = self.modules.get(module as usize) else {
bail!("no module at offest {}", module.red())

};
{...omitted for brevity...}

}

Figure D.6: The jump_into_func function in
arbitrator/prover/src/machine.rs#L1730–L1740

● The checks in the Machine and NativeInstance run_main functions are reversed
(figure D.7). Additionally, Machine::run_main and Machine::from_user_path
should be marked as test functions with #[cfg(test)]. Make sure this tag is used
consistently.

impl RunProgram for Machine {
fn run_main(&mut self, args: &[u8], config: StylusConfig, ink: u64) ->
Result<UserOutcome> {

{...omitted for brevity...}
if self.ink_left() == MachineMeter::Exhausted {

return UserOutcome::OutOfInk;
}
if self.stack_left() == 0 {

return UserOutcome::OutOfStack;
}
{...omitted for brevity...}

}

impl<E: EvmApi> RunProgram for NativeInstance<E> {
fn run_main(&mut self, args: &[u8], config: StylusConfig, ink: u64) ->
Result<UserOutcome> {

{...omitted for brevity...}
let status = match main.call(store, args.len() as u32) {

Ok(status) => status,
Err(outcome) => {

if self.stack_left() == 0 {
return Ok(OutOfStack);

}
if self.ink_left() == MachineMeter::Exhausted {

return Ok(OutOfInk);
}

{...omitted for brevity...}
}

Figure D.7: The Machine and NativeInstance run_main functions in
arbitrator/stylus/src/run.rs

● WASM compilation relies on CallImport, which is undocumented and is now
deprecated in favor of WasmImport.

Trail of Bits 114 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbitrator/prover/src/machine.rs#L1730-L1740
https://todo.sr.ht/~eliasnaur/gio/513
https://github.com/golang/go/issues/38248

● The comment for the get_return_data function is incorrect; the highlighted part
should say vm.RETURNDATACOPY.

/// Returns the EVM return data.
/// Analogous to `vm.RETURNDATASIZE`.
fn get_return_data(&mut self, offset: u32, size: u32) -> Vec<u8>;

Figure D.8: Misleading comment about retrieving return data
(stylus/arbitrator/arbutil/src/evm/api.rs#113–115)

● The comment on the custom opcodes in wavm.rs indicates that more
documentation exists in a file called “Custom opcodes.md.” This file is not included
in the repository. Either include the file in the repository or change the comment to
link to the proper resource.

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum Opcode {

Unreachable,
Nop,
{...omitted for brevity...}
// Custom opcodes not in WASM. Documented more in "Custom opcodes.md".
/// Custom opcode not in wasm.
InitFrame,

Figure D.9: stylus/arbitrator/prover/src/wavm.rs#L131

● Various timeout durations are hard-coded across the codebase. Change them to
constant values and document how the duration values were chosen.

impl RequestHandler<VecReader> for CothreadRequestor {
fn handle_request(/* (...) */) -> (Vec<u8>, VecReader, u64) {

// ...
match self.rx.recv_timeout(Duration::from_secs(5)) { /* ... */ }

impl CothreadHandler {
pub fn wait_next_message(&mut self) -> MaybeEscape {

let msg = self.rx.recv_timeout(Duration::from_secs(10));
// ...

}

child_timeout: Duration::from_secs(15),

Figure D.10: Hard-coded timeouts in stylus_backend.rs and machine.rs

● The call_user_func function is never used outside of tests, as shown in the
screenshot included in figure D.8, so it should be included only in test builds.

pub fn call_user_func(&mut self, func: &str, args: Vec<Value>, ink: u64) ->

Trail of Bits 115 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/0509a98f4ec88d34b4ae2d65ec74ed490a414388/arbitrator/arbutil/src/evm/api.rs#L113-L115
https://github.com/OffchainLabs/stylus/blob/5bf4ddbb87bb486b3791fcb7c7d8b0d4dd10ec8a/arbitrator/prover/src/wavm.rs#L131

Result<Vec<Value>> {
self.set_ink(ink);
self.call_function("user", func, args)

}

Figure D.11: The call_user_func function in
stylus/arbitrator/prover/src/machine.rs#L1796–1799; a screenshot showing that

the function is used only in tests

● Programs are currently not forced to be reactivated if a change in the Stylus version
is detected during program execution; this could be used as a way to bypass the
important system invariant that contracts being executed should have been
activated under the current version. For instance, if the Stylus version is upgraded
from a smart contract (e.g., a multisignature wallet or a DAO), then when the call to
ArbOwner to set a new Stylus version returns, the contract under execution was
never activated under the current version.

● The RETURN_DATA_COPY host I/O operation does not error out when reading out of
bounds. The EVM equivalent will revert if offsite + size overflows or if offsite +
size is greater than len(return_data); this is a divergence that can lead to user
mistakes.

fn read_return_data(
&mut self,
dest: GuestPtr,
offset: u32,
size: u32,

) -> Result<u32, Self::Err> {
self.buy_ink(HOSTIO_INK + EVM_API_INK)?;

// pay for only as many bytes as could possibly be written
let max = self.evm_return_data_len().saturating_sub(offset);
self.pay_for_write(size.min(max))?;

Trail of Bits 116 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/3b3a1a422e5093791087a5a65a9c36123d399b22/arbitrator/prover/src/machine.rs#L1796-L1799

let ret_data = self.evm_api().get_return_data();
let ret_data = ret_data.slice();
let out_slice = arbutil::slice_with_runoff(&ret_data, offset,

offset.saturating_add(size));

let out_len = out_slice.len() as u32;
if out_len > 0 {

self.write_slice(dest, out_slice)?;
}
trace!(

"read_return_data",
self,
[be!(offset), be!(size)],
out_slice.to_vec(),
out_len

)
}

Figure D.12: stylus/arbitrator/prover/src/machine.rs

● The error cases shown in figure D.9 are not accompanied by clear error messages.

let mut asm_estimate: u64 = 512000;
{...omitted for brevity...}

let mut cached_init: u64 = 0;
{...omitted for brevity...}

let mut init = cached_init;
{...omitted for brevity...}

Ok(StylusData {
ink_left: ink_left.as_u32(),
ink_status: ink_status.as_u32(),
depth_left: depth_left.as_u32(),
init_cost: init.try_into()?,
cached_init_cost: cached_init.try_into()?,
asm_estimate: asm_estimate.try_into()?,
footprint,
user_main,

})

Figure D.13: Error cases in which u64 variables are cast into u16 types, without proper error
messages (stylus/arbitrator/prover/src/binary.rs#606–635)

Solidity Code
● All the prefixes used during verification of Merkel trees in the OSP are included as

the same string. Because they are all the same, consider using a global variable to
hold the string prefix.

function proveLastLeaf(

Trail of Bits 117 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus/blob/0f5d87534e1372aa2095f636fc28a09115b9d09b/arbitrator/prover/src/binary.rs#L606-L635

Machine memory mach,
uint256 offset,
bytes calldata proof

)
internal
pure
returns (

uint256 leaf,
MerkleProof memory leafProof,
MerkleProof memory zeroProof

)
{

string memory prefix = "Module merkle tree:";
{...omitted for brevity...}

}

function executeLinkModule(
ExecutionContext calldata,
Machine memory mach,
Module memory mod,
Instruction calldata,
bytes calldata proof

) internal pure {
string memory prefix = "Module merkle tree:";
{...omitted for brevity...}

}

function executeUnlinkModule(
ExecutionContext calldata,
Machine memory mach,
Module memory,
Instruction calldata,
bytes calldata proof

) internal pure {
string memory prefix = "Module merkle tree:";
{...omitted for brevity...}

}

Figure D.14: Hard-coded strings in
stylus-contracts/src/osp/OneStepProverHostIo.sol#L392–483

● The _packBid function truncates the upper 64 bits of the uint256 bid value.

/// Creates a packed bid item
function _packBid(uint256 bid, uint64 index) internal pure returns (uint256) {

return (bid << 64) | uint256(index);
}

Figure D.15: The bid value is truncated by shifting its bits.
(stylus-contracts/src/chain/CacheManager.sol#184–187)

Trail of Bits 118 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/stylus-contracts/blob/stylus/src/osp/OneStepProverHostIo.sol#L392-L483
https://github.com/OffchainLabs/stylus-contracts/blob/f3445c042a09cbe493aafae3c5136b7f54411298/src/chain/CacheManager.sol#L184-L187

● Users could bid for space with msg.value == 0. Consider adding a minimum bid to
prevent this.

Go Code
● There is a print statement in the production code, shown in figure D.11:

// Inserts a new item, returning true if already present.
func (p RecentWasms) Insert(item common.Hash, retain uint16) bool {

if p.cache == nil {
cache := lru.NewBasicLRU[common.Hash, struct{}](int(retain))
p.cache = &cache

}
if _, hit := p.cache.Get(item); hit {

println("hit!")
return hit

}
p.cache.Add(item, struct{}{})
return false

}

Figure D.16: A print statement is triggered when the cache is hit.
(stylus-geth/core/state/statedb_arbitrum.go#275–287)

Trail of Bits 119 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/OffchainLabs/polygeth/blob/143049b6f734b6384ec20804963d1347c37c52b1/core/state/statedb_arbitrum.go#L275-L287

E. Patch That Extends Tests and Assertions

This appendix contains code for the patch that will address TOB-STYLUS-19.

diff --git a/arbitrator/prover/src/binary.rs b/arbitrator/prover/src/binary.rs
index e4f7c2fc..aa8196bf 100644
--- a/arbitrator/prover/src/binary.rs
+++ b/arbitrator/prover/src/binary.rs
@@ -216,7 +216,7 @@ pub fn op_as_const(op: Operator) -> Result<Value> {

}
}

-#[derive(Clone, Debug, Default)]
+#[derive(Clone, Debug, Default, PartialEq)]
pub struct FuncImport<'a> {

pub offset: u32,
pub module: &'a str,

@@ -306,7 +306,7 @@ pub fn parse<'a>(input: &'a [u8], path: &'_ Path) -> Result<WasmBinary<'a>> {
};
Validator::new_with_features(features)

.validate_all(input)
- .wrap_err_with(|| eyre!("failed to validate {}", path.to_string_lossy().red()))?;
+ .map_err(|err| eyre!("failed to validate {}: {}", path.to_string_lossy().red(), err))?;

let mut binary = WasmBinary::default();
let sections: Vec<_> = Parser::new(0).parse_all(input).collect::<Result<_, _>>()?;

diff --git a/arbitrator/prover/src/test.rs b/arbitrator/prover/src/test.rs
index 44a8dff0..c3bda441 100644
--- a/arbitrator/prover/src/test.rs
+++ b/arbitrator/prover/src/test.rs
@@ -3,8 +3,15 @@

#![cfg(test)]

+use fnv::FnvHashMap as HashMap;
use crate::binary;
use std::path::Path;
+use wasmparser::MemoryType;
+use crate::binary::ExportKind::{Func, Global, Memory};
+use crate::programs::prelude::CompileConfig;
+use crate::binary::{ExportMap, NameCustomSection, WasmBinary};
+use crate::value::ArbValueType::I32;
+use crate::value::{FunctionType, Value};

fn as_wasm(wat: &str) -> Vec<u8> {
let wasm = wasmer::wat2wasm(wat.as_bytes());

@@ -20,7 +27,11 @@ pub fn reject_reexports() {
(func $should_reject (export "some_hostio_func") (param) (result))

)"#,
);

- let _ = binary::parse(&wasm, Path::new("")).unwrap_err();
+ let expected_error_msg = "binary exports an import with the same name \u{1b}[31;1msome_hostio_func\u{1b}[0;0m";
+ assert_eq!(
+ binary::parse(&wasm, Path::new("")).unwrap_err().to_string(),
+ expected_error_msg
+);

let wasm = as_wasm(
r#"

@@ -29,7 +40,10 @@ pub fn reject_reexports() {
(global $should_reject (export "some_hostio_func") f32 (f32.const 0))

)"#,
);

- let _ = binary::parse(&wasm, Path::new("")).unwrap_err();
+ assert_eq!(
+ binary::parse(&wasm, Path::new("")).unwrap_err().to_string(),
+ expected_error_msg
+);
}

#[test]
@@ -41,7 +55,17 @@ pub fn reject_ambiguous_imports() {

(import "vm_hooks" "some_import" (func (param i64) (result i64 i32)))
)"#,

);

Trail of Bits 120 Arbitrum Stylus Security Assessment
PUBLIC

- let _ = binary::parse(&wasm, Path::new("")).unwrap();
+ let bin = binary::parse(&wasm, Path::new("")).unwrap();
+
+ // Note: import names are not necessarily unique
+ // https://webassembly.github.io/spec/core/syntax/modules.html#imports
+ assert_eq!(bin.imports.len(), 2);
+ for i in 0..2 {
+ let imp = &bin.imports[i];
+ assert_eq!(imp.offset, 0);
+ assert_eq!(imp.module, "vm_hooks");
+ assert_eq!(imp.name, "some_import");
+ }

let wasm = as_wasm(
r#"

@@ -50,5 +74,134 @@ pub fn reject_ambiguous_imports() {
(import "vm_hooks" "some_import" (func (param i32) (result)))

)"#,
);

- let _ = binary::parse(&wasm, Path::new("")).unwrap_err();
+ assert_eq!(
+ binary::parse(&wasm, Path::new("")).unwrap_err().to_string(),
+ "inconsistent imports for \u{1b}[31;1mvm_hooks\u{1b}[0;0m \u{1b}[31;1m\"some_import\"\u{1b}[0;0m"
+);
+}
+
+
+#[test]
+pub fn parse_user_expect_missing_export_with_name_user_entrypoint() {
+ let wasm = as_wasm(
+ r#"
+ (module
+ (memory 0 0)
+ (export "memory" (memory 0)))
+"#,
+);
+ let compile = CompileConfig::version(0, true);
+ let result = WasmBinary::parse_user(&wasm, 1, &compile);
+ assert_eq!(
+ result.err().expect("error expected").to_string(),
+ "missing export with name \u{1b}[31;1muser_entrypoint\u{1b}[0;0m"
+);
+}
+
+#[test]
+pub fn parse_user_export_name_within_max_length() {
+ let longest_acceptable_export_name = "A".repeat(500);
+ let wasm = as_wasm(
+ &format!(r#"
+ (module
+ (memory 0 0)
+ (export "memory" (memory 0))
+ (type $void (func (param) (result)))
+ (func (export "user_entrypoint") (param $args_len i32) (result i32)
+ i32.const 0
+)
+ (func (export "{}") (type $void))
+)
+"#, longest_acceptable_export_name),
+);
+ let compile = CompileConfig::version(0, true);
+ let result = WasmBinary::parse_user(&wasm, 1, &compile);
+
+ assert!(result.is_ok());
+ let (binary, _data, pages) = result.unwrap();
+ // TODO/FIXME: Ideally, this should be:
+ // assert_eq!(binary, WasmBinary{ ... });
+ // but it requires e.g. 'Element' struct to be Eq/PartialEq
+ assert_eq!(binary.types, vec![FunctionType { inputs: vec![], outputs: vec![] }, FunctionType { inputs: vec![I32],
outputs: vec![I32] }]);
+ assert_eq!(binary.imports, vec![]);
+ assert_eq!(binary.tables, vec![]);
+ assert_eq!(binary.memories, vec![MemoryType { memory64: false, shared: false, initial: 0, maximum: Some(0) }]);
+ assert_eq!(binary.globals, vec![Value::I64(0), Value::I32(0), Value::I32(0), Value::I32(0)]);
+
+ let mut expected_exports : ExportMap = Default::default();
+ expected_exports.insert("stylus_ink_left".to_string(), (0u32, Global));
+ expected_exports.insert(longest_acceptable_export_name.clone(), (1, Func));
+ expected_exports.insert("memory".into(), (0, Memory));
+ expected_exports.insert("stylus_ink_status".into(), (1, Global));

Trail of Bits 121 Arbitrum Stylus Security Assessment
PUBLIC

+ expected_exports.insert("stylus_scratch_global".into(), (2, Global));
+ expected_exports.insert("user_entrypoint".into(), (0, Func));
+ expected_exports.insert("stylus_stack_left".into(), (3, Global));
+
+ assert_eq!(binary.exports, expected_exports);
+ assert_eq!(binary.start, None);
+ assert_eq!(binary.elements.len(), 0);
+
+ assert_eq!(binary.codes.len(), 2);
+
+ let mut expected_functions = HashMap::default();
+ expected_functions.insert(1u32, longest_acceptable_export_name);
+ expected_functions.insert(0u32, "user_entrypoint".to_string());
+
+ assert_eq!(binary.names, NameCustomSection {
+ module: "user".to_string(),
+ functions: expected_functions
+ });
+ assert_eq!(pages, 0);
+ // TODO/FIXME: Assert binary.codes and _data
+}
+
+
+#[test]
+pub fn parse_user_export_name_too_long() {
+ let longest_acceptable_export_name = "A".repeat(501);
+ let wasm = as_wasm(
+ &format!(r#"
+ (module
+ (memory 0 0)
+ (export "memory" (memory 0))
+ (func (export "{}") (void) (void))
+)
+"#, longest_acceptable_export_name),
+);
+ let compile = CompileConfig::version(0, true);
+ let result = WasmBinary::parse_user(&wasm, 1, &compile);
+ assert_eq!(
+ result.err().expect("error expected").to_string(),
+ "wasm \u{1b}[31;1mname\u{1b}[0;0m too long: \u{1b}[31;1m501\u{1b}[0;0m > \u{1b}[31;1m500\u{1b}[0;0m"
+);
+}
}

Figure E.1: Patch for tests

Trail of Bits 122 Arbitrum Stylus Security Assessment
PUBLIC

F. Toward an Automated Fuzzing Process

For this engagement, we created a fuzz test that uses bolero, an in-process,
coverage-guided, evolutionary fuzzing engine that works with Rust code. This test covers
the parsing and processing of WASM programs, which take untrusted inputs. We integrated
the fuzz test into the tests of the arbitrator/stylus crate (i.e., added a new test to
tests/native.rs). Figure F.1 shows the first part of the fuzz_wasm test:

#[test]
fn fuzz_wasm() {

bolero::check!().for_each(|data: &[u8]| {

let exports_test_case = r#"
(module

(func (export "user_entrypoint") (param i32) (result i32)
unreachable
)

)
"#;

let available_imports = r#"
(module
(import "vm_hooks" "pay_for_memory_grow" (func $pay_for_memory_grow (param

i32)))
(import "vm_hooks" "read_args" (func $read_args (param i32)))
(import "vm_hooks" "write_result" (func $write_result (param i32 i32)))
(import "vm_hooks" "exit_early" (func $exit (param i32)))
(import "vm_hooks" "msg_value" (func $msg_value (param

i32)))
(import "vm_hooks" "call_contract" (func $call_contract (param i32

i32 i32 i32 i64 i32) (result i32)))
(import "vm_hooks" "block_coinbase" (func $block_coinbase (param

i32)))
(import "vm_hooks" "contract_address" (func $contract_address

(param i32)))
(import "vm_hooks" "chainid" (func $chainid (result i64)))
(import "vm_hooks" "evm_gas_left" (func $evm_gas_left (result i64)))

)
"#;

let wasm_exports = wat::parse_str(exports_test_case).unwrap();
let wasm_imports = wat::parse_str(available_imports).unwrap();

let mut unstructured = Unstructured::new(data);
let mut config = Config::arbitrary(&mut unstructured).expect("arbitrary

config");
config.min_funcs = 1;
config.max_funcs = 5;
config.max_memories = 1;
config.min_memories = 1;
config.bulk_memory_enabled = false;

Trail of Bits 123 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/camshaft/bolero

config.multi_value_enabled = false;
config.exports = Some(wasm_exports.clone());
config.available_imports = Some(wasm_imports.clone());
…

Figure F.1: The header of the fuzz test

In order to run the test efficiently, Stylus needs well-formed WASM binaries. The use of raw
bytes to feed the fuzzer is absolutely impractical because WASM modules have rather strict
constraints. Therefore, we decided to use wasm-smith to craft valid WASM binaries. While
we could have used the vanilla version of the tool, the results would not have been good
because the WASM binaries need certain imports and exports that vanilla wasm-smith
would have been extremely unlikely to include by chance. Therefore, we had to fork
wasm-smith to add a few small features.

Once a module is properly created, native execution is used to quickly run the binary:

if let Ok(module) = Module::new(config, &mut unstructured) {
let wasm_bytes = module.to_bytes();
let mut file_native = NamedTempFile::new().unwrap();
file_native.write_all(&wasm_bytes).unwrap();
file_native.flush().unwrap();

let mut compile = my_test_compile_config(false);
let config = my_uniform_cost_config();
if let Ok(mut native) =

NativeInstance::new_linked(file_native.path().display().to_string(), &compile,
config) {

let ink = 1_000_000;
native.set_meter_data();
native.set_ink(ink);
let args = vec![1];
run_native(&mut native, &args, ink);

Figure F.2: Native execution of the WASM binary

Finally, after native execution, the WASM binary can be run in prover mode:

let mut file_machine = NamedTempFile::new().unwrap();
file_machine.write_all(&wat.as_bytes()).unwrap();
file_machine.flush().unwrap();

let maybe_machine = Machine::from_user_path(file_machine.path(), &compile);
match maybe_machine {

Ok(mut machine) => {
run_machine(&mut machine, &args, config, ink);
check_instrumentation(native, machine);
}
Err(err) => {

println!("{}", err);

Trail of Bits 124 Arbitrum Stylus Security Assessment
PUBLIC

https://github.com/ggrieco-tob/wasm-tools
https://github.com/ggrieco-tob/wasm-tools

}
}

Figure F.3: Prover execution of the binary

This part of the fuzzing test is very slow (with single executions usually taking around 20
seconds). The produced binaries to test are small, so we suspect that most of the
processing time comes from the processing and conversion of libraries (e.g., soft float
libraries). This code will also check that the native and instrumented machine consumes
the same amount of ink and memory stacks.

With all these steps completed, the fuzzer can then be run using the following command:

$ cargo bolero test test::native::fuzz_wasm -s NONE

After the build finishes, bolero will immediately start running the fuzzing campaign. ASan
can be enabled by removing -s NONE from the command, but this results in slower
execution times and may trigger some crashes from Wasmer (e.g., TOB-STYLUS-8,
TOB-STYLUS-9).

When this command is used, bolero will run for as long as needed until it triggers a failure.
We recommend monitoring the values on screen to make sure the fuzzer explores as many
code paths as possible.

Note that this fuzzer will not directly use the coverage provided by the execution of the
WASM code compiled as native. Instead, it will use the coverage of the underlying Rust
implementation. Coverage of the compiled WASM code will have to be implemented in
order to inspect it and to increase the effectiveness of the fuzzing campaign.

Recommendations
The testing code needs to be refactored to be as close as possible to the production code.
In that regard, we have a few recommended changes:

● The use of native execution during testing fails to validate WASM binaries as part of
the instrumentation executed during activation of the binaries. This results in
divergences in executions when the native execution contains an unsupported
WASM feature (e.g., vectorized operations). Make sure the validation after activation
is performed exactly the same for different modes.

● The test’s prover execution code uses the user-test library instead of the
production code. It should be changed to use the production code so that it more
closely matches the implementation.

● The testing code also contains some testing code related to EVM handling (e.g.,
calling another contract). This code should be changed to use the equivalent from

Trail of Bits 125 Arbitrum Stylus Security Assessment
PUBLIC

the production code. While it is not critical to have the same behavior, using as
much of the production code as possible is useful for finding issues in Stylus.

Moving forward, we recommend that Offchain implement a “fuzzer-friendly mode” that
avoids performing very CPU-intensive operations that can be skipped during a fuzzing
campaign.

Additionally, consider adapting specific WASM tools such as xsmith in order to trigger
more interesting and complex behavior that wasm-smith cannot easily reach, particularly
for testing optimized code.

Integrating Fuzzing and Coverage Measurement into the Development
Cycle
Once the fuzzing procedure has been tuned to be fast and efficient, it should be properly
integrated into the development cycle to catch bugs. We recommend adopting the
following procedure to integrate fuzzing using a CI system:

1. After the initial fuzzing campaign, save the corpora that is generated for every test.

2. For every internal development milestone, new feature, or public release, rerun the
fuzzing campaign for at least 24 hours starting with the current corpora for each
test.

3. Update the corpora with the new inputs generated.

Note that, over time, the corpora will come to represent thousands of CPU hours of
refinement and will be very valuable for guiding efficient code coverage during fuzz testing.
However, an attacker could also use them to quickly identify vulnerable code. To mitigate
this risk, we recommend keeping the fuzzing corpora in an access-controlled storage
location rather than a public repository. Some CI systems allow maintainers to keep a
cache to accelerate building and testing. The corpora could be included in such a cache if
they are not very large. For more on fuzz-driven development, see the CppCon 2017 talk
given by Google’s Kostya Serebryany.

Trail of Bits 126 Arbitrum Stylus Security Assessment
PUBLIC

https://gitlab.flux.utah.edu/xsmith/webassembly-sandbox/
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf

G. Recommendations for Improving Integration Tests

In this appendix, we provide recommendations for making improvements to the tests
found in system_tests/program_tests.go and for including additional test cases. Note
that additional assertions may need to be performed in some of the test cases to cover all
edge cases.

● The test “Checking success (Rust => Solidity => Rust)” should assert the
following:

○ A single transaction was executed.

○ Two internal transactions were executed.

○ The transaction returned the expected Keccak data.

● Add a test to ensure that static call properties are preserved (Solidity => Stylus
=> Solidity):

○ Have a Solidity contract perform a static call into a Stylus program.

○ Have the Stylus program call another Solidity contract that tries to modify the
state.

○ Verify that a revert occurs during the Stylus program’s call to the other
Solidity contract.

An additional version of this test could perform a write to storage within the Stylus
program instead of calling into Solidity.

Note that a test case already exists from the Stylus counterpart.

● Add a test to ensure that the self-destruct opcode cannot be used to destroy
Stylus programs (Stylus => Solidity). Stylus programs cannot contain the
self-destruct opcode; however, they use delegatecall, which could make
self-destruction possible:

○ Have a Stylus program call delegatecall on a Solidity program to
self-destruct the Stylus program.

○ Have the test ensure that the Stylus program is no longer callable and that it
no longer has code.

○ Have the test verify that the Stylus program cannot be reactivated.

Consider using EIP-6780 for this test.

Trail of Bits 127 Arbitrum Stylus Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-6780

Note that additional test cases could verify that the Stylus program that has been
self-destructed is still callable within the same transaction.

● Add a test for delegatecall functionality (Solidity => Stylus && Stylus =>
Solidity):

○ Create a program with some values in its storage and have it call
delegatecall on a program of a different kind (e.g., Stylus or Solidity) that
reads those values from the storage and returns them.

○ Have the test check that the returned values match the expected ones.

● Add a test to ensure that low-level Solidity call properties are preserved
(Solidity => Stylus && Stylus => Solidity):

○ Have a Solidity contract perform a low-level call to a Stylus program with no
code. The test should ensure that the low-level call succeeds.

○ Have a Stylus program perform a low-level call to a Solidity program with no
code or EOA. The test should ensure that the call succeeds.

● Add a test to determine whether destroyed programs can be redeployed with
CREATE2 (Solidity || Stylus => Stylus => Solidity):

○ Have a Solidity (or Stylus) contract deploy a new Stylus program through
CREATE2.

○ Have the newly created Solidity (or Stylus) program call delegatecall on a
Solidity contract to execute the self-destruct opcode on itself.

○ Have the test repeat the first step to verify that the self-destructed program
can be redeployed.

○ Have the test ensure the contract is callable after the redeployment.

Consider using EIP-6780 for this test.

● Add tests to ensure reasons for reverts are preserved across environments
(Stylus => Solidity && Solidity => Stylus):

○ Have a Stylus program perform calls to a Solidity program, and have those
calls revert for different reasons (e.g., panic due to overflow, panic due to
out-of-bounds read) and in different ways (e.g., a string stating the reason, a
custom error). Have the test ensure that those errors are correctly preserved
by returning them and comparing them against their expected values. Create
the same test case for a Solidity program calling a Stylus program.

● Add various tests to check out-of-gas/ink cases such as the following:

Trail of Bits 128 Arbitrum Stylus Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-6780

○ From Rust directly

○ From Rust calling to Rust

○ From Solidity calling to Rust

○ From Solidity calling to Rust calling to Rust again

○ From Rust calling to Solidity calling to Rust

○ From Rust calling to Solidity calling to Rust and calling to Rust again

● Add a test of the stack frame limit:

○ The test should verify that the stack depth for Solidity programs will never
exceed 1,023 when called by a Stylus program. Starting from a Stylus
program, have the program call a Solidity contract, which would then call the
Stylus program, and so on.

○ The test should fail if the stack depth exceeds 1,023 Solidity frames.

Trail of Bits 129 Arbitrum Stylus Security Assessment
PUBLIC

